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Abstract. Long-range transport of wildfire smoke affects air quality on a broad geographic and temporal 

scale. Using a novel satellite-based dataset that allows us to observe daily smoke plume coverage for almost 

every location in the U.S. from 2006 to 2013, we find that transport of wildfire smoke generates frequent 

and significant variations in air pollution, especially fine particulate matter, for cities hundreds of miles 

away from the fire itself. We link this variation to Medicare administrative data to provide the first national-

scale evaluation of the health cost of wildfire pollution among the U.S. elderly. We show that wildfire 

smoke exposure poses a significant mortality risk for the elderly. The effect concentrates among individuals 

who live in areas with generally low background levels of air pollution. We find strong and consistent 

evidence that smoke exposure also increases healthcare use and spending.  
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1. Introduction 

 Wildfires are widely recognized as major contributors to air pollution, contributing approximately 

15 percent of total US particle emissions each year.  This is more than the emissions from power plants and 

transportation sectors combined.2 Despite the obvious health threats that wildfires pose, the literature faces 

two challenges in credibly establishing the health consequences of wildfire pollution exposure. First, 

wildfire smoke can travel long distances—hundreds or even thousands of miles—and persist for days or 

even weeks. The lack of ability to track wildfire smoke movement and to measure health outcomes on a 

population scale have forced many previous studies to focus on communities in the immediate vicinity of 

fires. Second, previous research often studies intensive air pollution events from unusually large wildfires, 

whereas the average wildfire is small in scale, burning less than 100 acres of land. Because the literature 

has failed to make use of evidence from smaller but more frequent burnings and to include the impact of 

both small and large fires on distant locations in its assessment, there is to date a dearth of evidence on the 

level of population’s wildfire pollution exposure and the health cost of exposure. 

 In this paper, we provide the first national-scale evaluation of the health impact and healthcare cost 

of exposure to wildfire smoke. Our beginning point is a novel dataset of wildfire smoke plumes. This data 

comes from an operational group of National Oceanic and Atmospheric Administration (NOAA) experts 

who rely on satellite imageries to identify the location and the movements of every wildfire smoke plume 

in the US. Using this data, we derive daily smoke exposure status for almost every location in the US. To 

study the health effects of smoke exposure, we link this data to daily health and healthcare spending data 

derived from administrative records for the universe of Medicare beneficiaries over the years 2005 – 2013. 

This novel link gives us three primary advantages over the previous literature. First, both the satellite-based 

smoke data and the Medicare data contain information with a high level of spatial and temporal granularity. 

We are able to conduct analysis with a sample of over 86 million observations at the 5-digit ZIP Code by 

day level. Among many other advantages, the large sample size gives us adequate statistical power to 

precisely identify smoke’s effects on highly rare but important health events, such as mortality. Second, the 

data allows us to exploit quasi-random variation in air quality triggered by drifting smoke plumes. Our 

empirical strategy exploits year-to-year variation in whether a specific area is covered with smoke on a 

specific time of year to identify the causal impact of smoke. Third, the Medicare data gives us information 

on a range of health events, such as emergency room visits, hospitalization, and outpatient visits, within the 

same study population. This allows us to provide much more consistent and richer characterization of the 

                                                      
2  Source: US EPA Air Pollutant Emissions Trends Data < https://www.epa.gov/air-emissions-inventories/air-

pollutant-emissions-trends-data> 
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costs of wildfire pollution than was previously possible. For example, we are able to directly compare the 

magnitude of the mortality cost versus the healthcare cost of smoke. 

 Our analysis yields four main sets of findings. First, we use the satellite data to characterize wildfire 

smoke exposure in the US. We find wildfire smoke exposure is a widespread and recurrent hazard. Although 

wildfires are most prevalent in the west, wind transport of smoke-borne pollution affects a large portion of 

the country, with the typical US citizen being exposed to an average of 23 days of smoke per year. To 

further characterize smoke exposure, we relate the smoke data to two independently developed datasets. 

We first link it to wildfire records from wildland management and firefighting agencies. We find that on a 

smoke day a city is on average over 300 miles away from the nearest burning, suggesting the average smoke 

shock is generated from a distant fire. We then link smoke to the US EPA’s ground pollution monitoring 

data, and we show that the average smoke shock creates a transient but significant increase in air pollution, 

particularly the ambient fine particulate matter pollution (PM2.5). On average, we find that PM2.5 increases 

by about 2 ug/m3 on a smoke day when the daily average is roughly 11 ug/m3. Such an increase lasts for 

roughly 3 days before it dies out. 

 Second, we find wildfire smoke causes a significant increase in elderly mortality. On a typical 

smoke day, the mortality rate jumps up by 0.522 deaths per million Medicare beneficiaries exposed, which 

represents a 0.4 percent increase. Importantly, even in the elderly population we examine, we find no 

evidence of short-run mortality displacement or “harvesting” in the smoke-mortality relationship. This is 

the concern that a naïve mortality count would tend to overestimate the true mortality cost of a health shock 

(such as smoke exposure) if those killed by shocks are likely to be among the frailest individuals in the 

population and likely to die within a few days or weeks, anyway. Contrary to the harvesting hypothesis, we 

find exactly the opposite: mortality effects tend to increase as the post-event window increases in length. 

Employing an estimation framework that examines mortality in a multi-day look-forward window, we find 

that the effect of a day of smoke increases to 1.204 deaths per million over a 3-day window (the smoke day 

and the 2 following days) and 1.434 deaths per million over a 7-day window. Therefore, contemporaneous-

run estimates likely only partially capture the total impact of pollution exposure.3 

 Third, using the detailed information on healthcare use and cost for individuals enrolled in 

traditional (fee-for-service) Medicare, we investigate the impact of smoke on emergency department visits, 

hospital admissions, and general inpatient and outpatient healthcare spending. We find strong and consistent 

evidence that smoke exposure causes increased healthcare use and spending. This positive relationship is 

                                                      
3 To be clear, such a pattern could be generated by a model where smoke both accelerates the death of very frail 

individuals and has delayed effects that manifest only over days or weeks. However, the fact that we do not see a 

rebound in the mortality effect as the post-event window increases suggests that our results are not only due to 

harvesting.   
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present for overall admissions and spending as well as for cause-specific admissions for circulatory and 

respiratory causes, which are thought to be most sensitive to pollution.    

 Fourth, we explore heterogeneity in mortality responses to smoke. Relatively little is known about 

the shape of the relationship between pollution exposure and health, both in terms of how the health effects 

vary with the size of an acute shock and how the effect of the same size shock varies with background 

pollution levels.  Investigating these issues is complicated by the fact that the size and frequency of smoke 

exposure is often related to baseline pollution levels.  The smoke exposure natural experiment provides a 

method of addressing these questions.  Exploiting the fact whether an area is exposed to smoke and the size 

of the pollution impact of smoke exposure is largely independent of an area’s general characteristics, we 

ask whether the marginal effect of the same pollution exposure depends on whether the exposed area is 

generally polluted or not. We show that (1) how often an area is exposed to smoke is uncorrelated with 

average baseline PM2.5 levels, (2) the marginal effect of smoke on PM2.5 is uncorrelated with average PM2.5 

levels, but (3) the mortality effect of smoke is significantly larger in places with low average levels of PM2.5. 

Importantly, we find that such heterogeneity is not explained by differences in income levels.  

While this exercise does not directly speak to the mechanism underlying the heterogeneity, the 

finding may have policy implications. For example, a disproportionately large amount of resources are 

allocated to protect public health against pollution exposure in regions where air pollution level exceeds 

the US EPA’s national PM2.5 standard. However, we show that, at least when exposed to transient pollution 

variations, there is no evidence that individuals living in these highly-polluted regions experience 

significant mortality effects. While quantifying the benefits of reducing the average level of pollution is 

beyond the scope of this study, our results do suggest that resources may be deployed more effectively to 

reduce pollution shocks in less-polluted areas.     

 We contribute to the literature in three primary ways. Our study provides the first characterization 

of wildfire smoke exposure in the US using direct observation of smoke plumes. While the current 

understanding on wildfire exposure has focused on the prevalence and spatial distribution of fires, we 

highlight two significance of wildfire smoke exposure. First, we show that wildfire smoke is far from a 

remote risk that matters only for population living near forests. An average population in our sample is 

exposed to more than 3 weeks of smoke per year generated by fires hundreds of miles away; some regions 

with the most severe smoke exposure has few or no fires at all. Second, smoke generates transient but 

significant increase in air pollution. As a potential exacerbation of the smoke’s health hazard, the extent of 

the average pollution increase on a smoke day is unlikely to cause any visual impact on the air, and therefore 

may not trigger significant public attention and protection.   
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Our paper also delivers the first causal estimates of wildfire smoke’s health costs on a national 

scale. Previous literature – primarily consists of case studies of intensive fires – often struggles to achieve 

adequate statistical power because severe outcomes such as mortality or hospitalization are rare, as are 

wildfire occurrences (for reviews, see e.g., Liu et al., 2015; Reid et al., 2016).4 A small number of studies 

have considered the link between smoke exposure and mortality but have generally been unable to 

document a positive association.5 Measurement of exposure also varies across studies, from focusing on 

neighborhoods in the immediate vicinity of the burning area, to the use of global pollution transport model 

to predict wildfire pollution (e.g., Liu et al., 2017). 6  Overall, the previous literature has provided 

inconclusive evidence regarding the relevance of wildfire smoke’s health impacts, despite the fact that the 

link between wildfire smoke and air pollution including particulate matter exposure is well-established 

(Reisen et al., 2015), as is the link between particulate matter and mortality (Deryugina et al., 2016; 

Zanobetti and Schwartz, 2009). For example, Liu et al. (2015) report that of the 14 studies they review that 

considered the relationship between wildfire smoke and cardiovascular morbidity, only six reported positive 

associations, while Reid et al. (2016) summarize the literature as “inconsistent.” By using direct satellite 

observation to estimate a long panel and look at both mortality and healthcare consequences within the 

same estimation framework, our results may help reconcile evidence from previous literature.  

  Finally, our paper is related to the developing literature on the causal link between short-term 

exposure to air pollution and adverse health outcomes such as increases in health care utilization (Moretti 

and Neidell, 2011; Schlenker and Walker, 2015) and mortality (Deryugina et al., 2016; Knittel, Miller, and 

Sanders, 2016). Our results demonstrate both visually and statistically how a transient pollution dynamics 

                                                      
4 The strongest links between smoke exposure and health are for respiratory disease related primary care visits, 

emergency department visits and hospital admissions.  Evidence supporting cardiovascular responses is somewhat 

mixed. Some but not all studies found evidence suggesting a positive association between smoke exposure and 

conditions such as acute myocardial infarction, congestive heart failure, ischemic heart disease. For reviews, see e.g., 

Liu et al. (2015) and Reid et al. (2016). 
5 Vedal and Dutton (2006) study the impact of a large smoke plume that affected the Denver area in 2002 and find no 

increase on mortality in Denver relative to nearby control areas that were not affected by smoke.  Zu et al. (2016) 

analyze the impact of large forest fires in Quebec in 2002, which generated a large smoke plume that covered the 

Boston and New York City areas and did not find evidence of mortality increases in either of these regions.  One paper 

that does mortality effects is Jayachandran (2008), who studies the impact of very large wildfires that covered 

Indonesia in smoke in 1997 and concludes that prenatal exposure to smoke during these events accounts for a 

significant portion of the “missing children” in the 2000 Indonesian Census, although it is not clear whether this is a 

result of lower birth rates or decreased survival after birth. 
6 Liu et al. (2017) examine the relationship between particulate matter exposure driven by wildfire pollution and 

hospital admissions.  Like our study, Liu et al. (2017) use Medicare data, although they look at a shorter and slightly 

different period (2004 – 2009), conduct their analysis at the county level rather than the ZIP Code level, and only 

consider the Western United States. Methodologically, they rely on a global pollution transport model to identify 

pollution variation caused by smoke. For their main results, they do not observe an association between smoke 

exposure and respiratory or cardiovascular hospital admissions overall, although they do find an effect on respiratory 

admissions on days when smoke-induced pollution is particularly high. 
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translate into a broad set of health responses. More generally, our study points to wildfire smoke as a source 

of pollution variation that can potentially be used in other settings to study causal effects of air pollution. 

 The paper proceeds as follows. Section 2 describes the primary data sources. Section 3 

characterizes wildfire smoke exposure in the US. Section 4 explains the empirical strategy used to estimate 

the causal effects of wildfire smoke. Section 5 presents the air pollution and mortality effects of wildfire 

smoke. Section 6 presents the healthcare spending effects of wildfire smoke. Section 7 concludes.  

  

2. Primary Data Sources  

2.A. Wildfire, Smoke Plumes, and Air Pollution Data 

 Our smoke data come from the National Oceanic and Atmospheric Administration’s Hazard 

Mapping System (HMS). Every day, HMS smoke analysts incorporate information from animated satellite 

imageries to produce geo-referenced outlines that reflect their best estimate of the location of all smoke 

plumes observed across the U.S. The drawing is usually performed twice a day, once shortly before sunrise, 

and once shortly after sunset, giving us daily summaries of wildfire smoke exposure from August 2005 to 

December 2013. In rare cases where a smoke plume is believed to originate from sources outside of the 

satellites' range of observation, e.g. plumes approaching the West Coast from the Pacific, a smoke transport 

model is used to determine the source fire in order to help drawing. However, the majority of data 

production is based solely on satellite imageries and the analysts' visual screening. 

 We complement the smoke data with two ground-based measurements. First, we obtain wildfire 

records obtained from seven major wildland and fire management agencies.7 This data contains detailed 

information on time and location of wildland fire, which we use to provide validation to the satellite smoke 

measure. Second, we draw pollution monitor readings from the US EPA's Air Quality System (AQS). These 

data contain daily pollutant concentration readings at the individual station level. We measure pollution 

reading at the ZIP Code level by spatially averaging readings from all monitors within 20 miles of the ZIP 

Code centroid, with inverse of distance as weights. Whereas we focus on PM2.5 pollution in this paper, 

wildfire smoke is also understood to contain other pollutants. We therefore obtain monitoring data on PM2.5 

and five other “criteria air pollutants” as defined by the U.S. EPA, including coarse particulate matter 

(PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2).     

                                                      
7 Bureau of Indian Affairs, Bureau of Land Management, Bureau of Reclamation, California Department of Forestry 

and Fire Protection, National Park Service Fire and Aviation Management, US Fish & Wildlife Service, and Forest 

Service. 



7 

 

 

2.B. Health Outcomes Data 

 Our health and healthcare data come from Medicare administrative records. We obtain access to 

the Medicare Master Beneficiary Summary File, an annual directory which allows us to observe enrollment 

status and individual characteristics of 100% of eligible Medicare Beneficiaries, including both traditional 

fee-for-service Medicare and Medicare Advantage managed care. For each year, we observe beneficiaries' 

ZIP Code of residence, and for decedents, we observe date of death. Importantly, for the vast majority of 

beneficiaries, Medicare data's date of death field is verified with the Social Security Administration, 

allowing us to measure mortality accurately. Using these information, we build daily mortality rate for 

beneficiaries aged 65 or plus at the ZIP Code level from 2005 to 2013.  

 Whereas we use mortality rate as our baseline measure of health in this study, we also create a set 

of measures of health care utilization. We focus on the subset of beneficiaries enrolled in the fee-for-service 

Medicare (FFS). These make up about 75 percent of the population in our study sample. We obtain access 

to the Medicare Provider Analysis and Review File (MEDPAR) based on the accumulation of service 

claims corresponding to a particular stay. The dataset contains information on the date of admission, length 

of stay, and total cost associated with each stay. Each stay is associated with a field that identifies the 

beneficiary involved, which allows us to link to individual characteristics, such as ZIP Code of residence, 

in the Master Beneficiary Summary File. From this data, we build daily hospitalization rate and cost at the 

ZIP Code level. Next, we access the Medicare Information on Outpatient Services Standard Analytical File 

(Outpatient SAF) which contains the universe of outpatient claims submitted by institutional outpatient 

providers, and include information on the date of service and associated cost. Finally, from the MEDPAR 

and the Outpatient SAF files, we observe emergency room visits that both end up with hospitalization or 

not. 

 

3. Exposure to Wildfire Smoke in the U.S. 

 In this section we summarize wildfire smoke exposure in the U.S. While our analysis data contains 

millions of wildfire smoke events, it helps to begin with one example, the 2013 Rim Fire in central 

California, to illustrate the wildfire pollution problem, the challenges that existing research faces, and this 

paper’s approach. 
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 The Rim Fire is believed to have been ignited by a hunter who illegally started a campfire that 

eventually went out of control.8 The fire began on August 17, 2013 and was not contained until October 24, 

2013. It continued to burn for over a year before it was declared fully extinguished.  One of the largest fires 

in the US history, the Rim Fire consumed over 257,000 acres of land and the suppression cost $127 million.9 

Figure 1, Panel A is a satellite image showing of the Rim Fire’s pollution on August 22, 2013, as well as 

the location of two major cities in the area: Reno in Nevada, and San Jose in California. The image shows 

that winds from the south blow smoke from the Rim Fire to Reno. Figure 1, panel B shows that the smoke 

raised Reno’s level of fine particulate matter pollution (PM2.5) in the air to over 60 ug/m3, close to the level 

observed in Beijing. In contrast, the city of San Jose, which is almost equally distant to the fire but located 

to the southeast of the burning area, observed no significant changes in air quality over the same time period. 

Of course, the Rim Fire represents one of the largest fire and pollution events; the average wildfire smoke 

event in our data leads to much less severe air pollution consequences. However, the nature of the pollution 

shock is similar: difference in exposure are driven mainly by shifting wind patterns, and smoke exposure is 

transient, elevating the level of pollution for a number of days before it clears out.    

 Figure 2 plots the development of the Rim Fire over six days soon after it erupted and provides a 

series of day-to-day snapshots that represent the format of our smoke plume data. The figure highlights two 

typical challenges with the existing literature and how we approach them with our data. First, wildfire 

smoke does not only affect communities near the fire. Smoke plumes can rise 1 – 3 miles into the 

atmosphere and travel thousands of miles from the originating fire (Reisen et al., 2015). Figure 2 shows 

that the Rim Fire’s smoke indeed traveled quite far, covering much of the northwest US after a few days. 

The smoke data therefore allows us to capture exposure to the Rim Fire’s smoke for cities far away from 

the fire itself. Second, while large fires are not uncommon, the typical fire is small. Over the past two 

decades, the National Interagency Fire Center has identified an average of around 74,000 fires with the 

average fire burns around 80 acres.10 We can see this in Figure 2 which picks up numerous smaller fires in 

addition to the Rim Fire. While the scale of these fires are much smaller than the Rim Fire, our smoke data 

suggests that they nevertheless generate significant smoke plumes that travel long distances.  

 Figure 3 summarizes average wildfire exposure. The maps plot the average number of wildfire 

(panel A) and the average number of wildfire smoke days (panel B) by 5-digit ZIP Code over the period 

2005-2013. Although in the United States wildfires are most prevalent in the west, wind transport of smoke-

                                                      
8 See < http://www.latimes.com/local/la-me-rim-fire-20140808-story.html> 
9 www.fs.usda.gov/detail/stanislaus/home/?cid=stelprd3824723 
10 There is substantial variation in the magnitude of fires. For example, between 2012 and 2016, on average about 

around 1000 fires (1.5 percent) were classified as large (burning over 100 acres of timber or 300 acres of grass and 

brush), and around 30 fires each year were classified as significant, burning over 40,000 acres. See, e.g. 

https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html 
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borne pollution affects a large portion of the country. More statistics are reported in Table 1, panel A. We 

compute that the typical US citizen being exposed to an average of 23.3 days of smoke per year. Data 

suggests that the average smoke event is created by distant fires: on days when the satellite detects smoke 

coverage in a ZIP Code, the nearest wildfire is roughly 383 miles away according to the fire registry data.  

 

4. The Effect of Wildfire Smoke on Air Pollution, Mortality, Healthcare Use 

and Spending 

4.A. Empirical Strategy 

 We analyze the effect of wildfire smoke exposure in two ways: visually in event-study style graphs 

and also using regression analysis.  For the event-study analysis, , we take all 6.5 million ZIP Code-daily 

level smoke events and simply plot means of the outcome variables in the days before and after the smoke 

day. We remove secular components by including 366 day-of-year dummies and 7 day-of-week dummies, 

and with no other controls. The simplicity of this event study style exercise allows us to examine break in 

trends by looking at an extensive time window around the occurrence of smoke events. In our analysis, we 

plot outcomes for 20 days before and 20 days after the smoke day.  

 In our regression analysis, we develop a panel estimation model to estimate the reduced form effect 

of a day of wildfire smoke exposure. Since both smoke, pollution, and health may exhibit geographic and 

seasonal patterns, we use an identification strategy that explores year-to-year variation in smoke exposure 

within the same areas and during the same season of the year, we use an identification strategy that explores 

year-to-year variation in smoke exposure within the same areas and during the same season of the year. Let 

𝑌𝑧𝑡 be outcome in ZIP Code z on date t. Our primary estimation equation is 

 

 𝑌𝑧𝑡 = ∑ 𝜷𝒅 ⋅ 𝑆𝑚𝑜𝑘𝑒𝑧(𝑡−𝑑)
6
𝑑=−7  

   + 𝛼𝑧 ×𝑊𝑒𝑒𝑘𝑌𝑟𝑡⏟        
𝑍𝐼𝑃 𝐶𝑜𝑑𝑒 𝑏𝑦 𝑤𝑒𝑒𝑘−𝑜𝑓−𝑦𝑒𝑎𝑟

𝐹𝐸𝑠

+ 𝑆𝑡𝑎𝑡𝑒𝑧 × 𝑌𝑒𝑎𝑟𝑡⏞          

𝑠𝑡𝑎𝑡𝑒 𝑏𝑦 𝑦𝑒𝑎𝑟
𝐹𝐸𝑠

+ 𝐷𝑎𝑦𝑊𝑒𝑒𝑘𝑡⏟      
𝑑𝑎𝑦−𝑜𝑓−𝑤𝑒𝑒𝑘

𝐹𝐸𝑠

+ 𝑋𝑧𝑡𝛾 + 𝜀𝑧𝑡        (1) 
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 Our treatment variable is 𝑆𝑚𝑜𝑘𝑒𝑧𝑡, which is an indicator equals to 1 if the ZIP Code-day is covered 

by smoke, and 0 otherwise.11 We include 7 smoke leads (𝑆𝑚𝑜𝑘𝑒𝑧(𝑡+7), …, 𝑆𝑚𝑜𝑘𝑒𝑧(𝑡+1)) and 6 smoke lags 

(𝑆𝑚𝑜𝑘𝑒𝑧(𝑡−1), …, 𝑆𝑚𝑜𝑘𝑒𝑧(𝑡−6)) in the regression. Together with the contemporaneous smoke indicator 

(𝑆𝑚𝑜𝑘𝑒𝑧𝑡), these coefficients trace out the effect of smoke exposure in the week before and the week after 

the smoke day. Inclusion of leads and lags also addresses serial correlations in smoke exposure. While our 

table estimates focus on the coefficient on the contemporaneous smoke term 𝑆𝑚𝑜𝑘𝑒𝑧𝑡, we also plot leads 

and lags of smoke exposure as a second piece of visual evidence in addition to the simple event study 

analysis. 

 The key set of controls are the ZIP Code by week-of-year fixed effects which ensure that the 

comparison is done within the same ZIP Code on the same week of the year, but across years with different 

smoke exposure. We further control for state by year effects to capture variation in factors such as changes 

in state policies. Day-of-week effects capture any secular trend in the outcomes at the day-of-week level. 

For example, hospital admissions exhibit strong weekday vs. weekend pattern. Therefore, our primary 

specification includes 1.5 million ZIP Code by week-of-year dummies, 440 state by year dummies, and 7 

day-of-week dummies. In addition, we address the omitted variable bias concern that weather elements, 

such as temperature and precipitation, may interact with air pollution and at the same time have direct 

impact on health outcomes (Deschenes and Greenstone, 2011; Barreca, Clay, Deschenes, Greenstone, and 

Shapiro, 2016; Heutel, Miller, and Molitor, 2017). We use weather station data from the Global Historical 

Climatology Network and compute temperature and precipitation for each ZIP Code-day. We control for a 

step function in daily temperature, allowing the mortality effect to vary arbitrarily by 10-degree Fahrenheit 

bins. We also control for a quadratic term in daily precipitation. These controls are included in the time-

variant control matrix 𝑋𝑧𝑡. While this is a relatively large number of controls, our main regression sample 

includes 84 million observations, leaving the estimation model with sufficient degrees of freedom.12  

 Finally, we weight the regression using number of beneficiaries alive in each ZIP Code-date cell 

so that our estimates reflect the experience of a representative beneficiary. In subsequent analysis we report 

                                                      
11 We define a ZIP Code to be covered by smoke if any part of it intersects smoke plumes on a given day. In the 

appendix, we report a robustness check that defines exposure by the ZIP Code being entirely covered in smoke (“deep” 

exposure). This robustness specification produces slightly larger results across almost every pollution and health 

outcome, potentially because the exposure is stronger. 
12 In the appendix, we report specification checks where we either reduce the number of fixed effects controls, e.g. 

using plain ZIP Code, year, week-of-year, day-of-week fixed effects, or apply more stringent identifications, e.g. 

allowing ZIP Code fixed effects to vary arbitrarily by each day-of-year, including county-by-year fixed effects, or 

including date (year by day-of-year) fixed effects. Overall, these robustness checks produce similar results. Another 

concern with the smoke quasi-experiment is that wind currents might carry both wildfire smoke and other atmospheric 

pollution to downwind cities.  In the appendix, we show that are results are robust to including wind direction-by-state 

fixed effects. To the extent that most industrial pollution is from geographically fixed sources, these fixed effects 

should help to separate out health impacts from industrial pollution transport. 
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standard errors clustered at the county level. Our findings are not sensitive to more flexible forms of 

clustering, such as two-way clustering at both the county and the date level.  

  

4.B. Air Pollution Effects 

 We begin by examining the impact of smoke on the concentration of air pollution measured by 

ground-based pollution monitors. We first focus on PM2.5 which is best known as the main pollutant of 

wildfire emission. Panel A of Figure 4 shows that, both in the raw plot and in the lead/lag plot, the 

occurrence of smoke on day 0 corresponds to a clear spike in PM2.5 levels. Smoke’s effect on air quality is 

transient: the increase in the level of PM2.5 last for about 3 days before returning to the pre-period level. 

There is some evidence that PM2.5 increases on the day before smoke exposure. This may due to (1) serial 

correlations in daily smoke and pollution, and/or (2) measurement error in the smoke measure, as the data 

only captures smoke status at the instant when the satellite picture is taken. This evidence also suggests that 

it is important to include lead/lag terms in the regression analysis.13  

 Table 2 reports the effect of smoke on air pollution (i.e. the 𝛽0 coefficient in equation (1)) after 

controlling for lead/lag smoke. Column 1 shows that, on the smoke day, PM2.5 rises by roughly 2.3 ug/m3, 

relative to a daily mean of 10.7 ug/m3. By current standard established in the Clean Air Act, the daily safety 

concentration level is 35 ug/m3. Therefore, wildfire smoke provides a mild but meaningful shock to air 

quality. Smoke also increases the concentration of other air pollutants. Table 2 reports responses of other 

five “criteria pollutants” used by the EPA to characterize ambient air quality. Point estimates in column 2 

through 6 show that the impact of wildfire smoke on other criteria pollutants are significant, although they 

are smaller in magnitude. Concentrated increases are observed for coarse particulate matter (PM10) which 

is another direct emission of wildfire, and ozone (O3) which is the product of chemical reactions between 

fire-emitted pollutants or background pollutants in the atmosphere.  

 The evidence that wildfire smoke increases air pollution in distance cities is important for 

interpreting our health impact estimates as driven by wildfire pollution. Beside pollution exposure, wildfire 

may affect health outcomes through a number of mechanisms such as injury, property damage and 

evacuation. However, these external mechanisms are unlikely to matter for our estimation when the average 

smoke exposure is experienced hundreds of miles away from the fire itself. 

 

                                                      
13 Without smoke leads and lags, we obtain larger coefficient estimates for pollution, mortality, and healthcare use; 

on the other hand, our main conclusions are not sensitive to having more leads and lags, e.g. 20 smoke leads and 20 

smoke lags. These results are reported in the Appendix. 
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4.C. Mortality Effects 

 Panel B of Figure 4 plots the impact of smoke on mortality for all Medicare beneficiaries over age 

65.  Again, in both the raw plot and the lead/lag plot, the mortality rate exhibits a flat and stable trend in 

the 20 days before smoke exposure, followed by a discrete increase on the day when smoke hits. The size 

of the jump is roughly 0.5 extra deaths per million beneficiaries. The graph provides visual evidence of that 

the impact of smoke on mortality lasts for days, with excessive mortality visually concentrated in the first 

3 days after the smoke shock. However, the lead/lag plot on the right illustrates that these effects essentially 

disappear by 7 days after the shock.  This pattern motivates econometric specifications that are able to 

capture delayed causation, which we describe in detail below. 

 Table 3, panel A presents regression results of the impact of smoke exposure on elderly mortality.  

For future reference, we repeat the PM2.5 estimates in column 1. Column 2 shows that the contemporaneous 

(1-day) mortality rate increases significantly by 0.522 per million beneficiaries on a smoke day. 

Reassuringly, the magnitude of this effect is similar to that seen in Figure 4. The magnitude of the 

contemporaneous mortality consequence of wildfire smoke is moderate. Our estimate implies 21 excessive 

deaths among the Medicare beneficiaries on a smoke day (0.522 additional deaths per million people 

multiplied by 40.5 million Medicare beneficiaries). Based on satellite observations, a typical Medicare 

beneficiary is exposed to 23.3 smoke days per year, implying 489 annual deaths of beneficiaries due to 

wildfire smoke. In comparison, previous studies looking at the elderly population estimate that extreme 

heat (> 90° F days) related annual premature deaths range from 1,000 to 3,000 (Deschenes and Greenstone, 

2011; Barreca, Clay, Deschenes, Greenstone, and Shapiro, 2016; Heutel, Miller, and Molitor, 2017).  

 Focusing on the contemporaneous mortality effect of smoke can mask the true impact of pollution 

exposure. On the one hand, if pollution exposure “harvests” the lives of the unhealthiest individuals, 

contemporaneous mortality effects overestimate the true cost of pollution since those who are killed by 

pollution were likely to die soon, anyway. Alternatively, if the health effects of pollution is persistent, 

individuals might survive the initial exposure but get killed as the impact manifests over time. In this case, 

same-day mortality counts fail to capture the full cost of pollution exposure. This is likely to be the case in 

our setting, as suggested by the visual pattern presented in Figure 4.  

 To test these hypotheses, we repeat the mortality regressions but replace the dependent variable 

with mortality in the next 3- and 7-day look-ahead windows. For example, if January 1st, 2013 is a smoke 

day, our 3-day effect estimates capture the effect of smoke on mortality that takes place within the three 

days between January 1st to January 3rd, 2013. Notice that, although an smoke episode may last for a 

couple of days, since we control for 7 smoke leads and 6 smoke lags in all regressions, the effect estimate 

reflects the mortality effect of today’s smoke in the look-ahead window. Therefore, if the contemporaneous 
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impact of mortality is driven by “harvesting”, i.e. displacing forward deaths that would have occurred 

anyway in the next couple of days, one would expect the multi-day mortality effects to be zero. On the 

other hand, if the effect of smoke develops over time, then the multi-day coefficients are expected to grow 

in size. 

 Table 3, Panel A, columns 2 – 4 present results for 1-day, 3-day and 7-day event windows.  They 

indicate that the mortality impact of smoke exposure grows over time, and therefore that the 1-day estimate 

understates the true cost of smoke exposure. The point estimates of mortality effect grows from 0.522 on 

the smoke day (column 2) to 1.204 deaths per million over the 3-day window (column 3). Put differently, 

the estimate suggests that, in addition to its mortality impact on the initial exposure day, smoke leads to 

about 0.682 deaths per million over the next two days. The 7-day mortality estimate in column 4 suggests 

that beyond the third after since exposure, there are few additional deaths caused by the smoke.  This result 

is consistent with the visual evidence in Figure 4.  Importantly, the coefficient estimate does not decrease 

and remains significantly different from zero, suggesting the mortality impact we find is not only due to 

short-term displacement of deaths that otherwise would have occurred in the next week. Using the 7-day 

estimate, we calculate that the effect aggregates to an annual of 1,353 premature deaths due to wildfire 

smoke exposure. 

 

4.D. Healthcare Use and Spending Effects 

 We now examine the impact of wildfire smoke exposure on healthcare use and spending. Recent 

literature employs administrative records on hospital discharge records to estimate the effect of pollution. 

However, inpatient use likely capture only individuals who require the most intensive care, constituting an 

incomplete measure of illness. Importantly, discharge records may miss outpatient emergency department 

visits that do not result in admission.  For example, it may miss outpatient health care resources that 

individuals spent to avert the health consequence of pollution exposure. Without such spending, these 

individuals could have ended up with inpatient encounters.  

 

4.D.1 General Health Care Utilization Effects 

 We access the universe of the Medicare’s institutional claims for both inpatient and 

outpatient utilization among the FFS population, which allows us to paint a more comprehensive picture 

on healthcare costs.14 In our baseline analysis, we define healthcare utilization rate as the sum of hospital 

                                                      
14 Currently, we do not have access to the universe of claims in non-institutional settings, e.g. physician offices.  
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admission rate in inpatient setting and emergency room visit rate in outpatient setting. Panel C of Figure 4 

presents the impact of smoke on healthcare utilization. Again, there is a clear spike in utilization around the 

smoke day.  Although there is some evidence of an upward sloping pre-trend in the raw plot, this trend 

disappears when controlling for lead/lags on the right. The graphical pattern suggests that smoke’s impact 

on utilization concentrates in the day of exposure, and therefore in subsequent analysis we focus on same-

day effect estimates where the outcome variable is 1-day utilization. Table 4, panel A, column 1 shows that 

overall use increases by 9.282 visits per million beneficiaries, representing a roughly 0.5 percent increase 

from the mean of 1,964.35. Columns 2 and 3 of panel A show that the utilization effect is explained by 

significant increases of around 0.5 percent in both hospital admissions and outpatient ER visits.  Cutting 

the data in a slightly different way, column 1 of table 5 shows a similarly-sized effect on overall ER visits 

(including visits that end in admission and those that do not). Columns 2 and 3 of Table 5 show that these 

effects on use translate into effects on spending.  While the inpatient spending estimate is roughly in line 

with the 0.5 percent increase in admissions, the outpatient spending variable is significantly larger, at almost 

3 percent of the mean.  This suggests that the marginal outpatient visit caused by smoke is relatively 

expensive. 

 

4.D.2 Health Care Utilization Effects by Diagnosis 

 We have shown that wildfire smoke exposure increases general emergency room visits and 

hospitalization. While the existing literature on the health effects of wildfire pollution usually focuses on 

circulatory and respiratory related health care utilization, the consequences of pollution exposure can 

potentially extend beyond these diagnosis groups. Since we observe the primary diagnosis associated with 

each emergency room visit and hospital admission, in this subsection we examine utilization effects across 

a range of diagnosis groups.  

 In Table 6, we separately estimate the same-day utilization effects by primary diagnoses in both 

the emergency room setting and the hospitalization setting. We examine seven general diagnosis groups, 

including circulatory, respiratory, injury, digestive, neoplasm, infection, and genitourinary. We are first 

interested in whether and to what extent circulatory and respiratory related utilization explains the general 

emergency room visits and hospitalization findings. We start with column 1 and column 2. Our estimates 

suggest precise increases for both diagnoses, with stronger effects for circulatory diagnosis. For example, 

the two groups explain about 45 percent of the general hospitalization effect (Table 4, panel A, column 2). 

In column 3 and column 7, we report that the remaining effect is mainly explained by injury and urological 

diagnoses (including urinary tract infection and renal failure). Columns 4 to 6 suggest no consistent 

evidence of increases in utilization related to digestive, neoplasm, and infectious diseases.   
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 In the Appendix, we further explore diagnoses sub-groups in circulatory, respiratory, injury, and 

genitourinary categories. We find evidence that increase in both ER and hospitalization in the circulatory 

category is to a large extent explained by diagnoses related to cerebrovascular events, ischemic heart disease, 

and heart failure. For respiratory, the increases are due mainly to lower respiratory tract infections. While 

exposure to wildfire smoke is unlikely to directly cause injury, it is plausible that pollution causes physical 

discomfort which in turn leads to distraction and occurrences of various accidents such as falls. Somewhat 

consistent with the view, we find no specific diagnoses that appear to drive the injury findings. Finally, we 

find that the genitourinary results are driven by two specific groups: urinary tract infection and renal failure. 

We find this evidence to be reassuring, as individuals with these diseases are likely to be of relatively poor 

health and be more sensitive to deterioration of air quality. 

 

5. Heterogeneous Effects by Background Pollution Levels 

 An important aspect of the damage caused by pollution exposure involves understanding the shape 

of the dose-response relationship and whether how the marginal damage of pollution exposure varies with 

current pollution.  We now turn to explore heterogeneous effects by the background level of pollution 

concentration. The research question we ask here is: when exposed to the same pollution shock, do areas 

with different average levels of pollution exhibit differential mortality responses? The answer to this 

question is important for both the understanding of the pollution-health relationship and for environmental 

standard making, as air pollution regulation often targets to reduce the average level of pollution. However, 

answering this question is difficult even if one considers quasi-experimental variation in air pollution. The 

intrinsic challenge here is that the background level of pollution is often shaped by the pollution variation 

in the first place. For instance, an area may have relatively lower level of background pollution simply 

because it benefited more from a policy change that permanently reduced industrial activities in the region. 

In this case, the policy change does not represent a homogeneous shock to areas with high versus low 

background pollution level. 

 Our study context provides a unique opportunity to investigate such heterogeneity because the 

movements of smoke plumes are driven by wind patterns and therefore whether or not a location is covered 

by smoke on a particular day is plausibly unrelated to local conditions, including local background pollution 

levels.  Further, since wind blows the same smoke over long distances, the intensity of the pollution impact 

of smoke exposure is also plausibly unrelated to local conditions.  Finally, since smoke exposure creates an 

occasional short-term increase in air pollution, it is unlikely to affect the average difference in air pollution 

levels across regions. 
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 We begin by verifying that the appropriateness of our setting using ground-based pollution monitor 

data.  We first categorize each county with PM2.5 data for 2005-2013 into deciles in terms of their average 

daily PM2.5 concentration over the period, ranging from an average of 6.3 ug/m3 in the bottom decile to 

13.7 ug/m3 in the top decile. Figure 5, panel A shows average annual smoke days by background PM2.5 

deciles. Results indicate no evidence of a difference in the propensity of smoke exposure between high 

versus low pollution areas. Thus it does not appear to be the case that high background-pollution areas 

experience significantly more smoke days than low background-pollution areas.15 

 Next, we verify that the size of the PM2.5 increase associated with smoke exposure is also unrelated 

to background pollution.  These results are shown in Panel B of Figure 5.  Figure 6, panel B shows that 

smoke exposure increases PM2.5 by around 2.5 ug/m3, which agrees with our earlier finding in Table 2, and, 

importantly, that there is no significant relationship between the magnitude of the pollution effect of smoke 

exposure and background pollution. The magnitude of the estimate for counties in the top decile does appear 

to be slightly smaller than other groups, although the difference is not statistically significant.  

 The above two steps provides supportive evidence that exposure to smoke causes the same increase 

in pollution regardless of background pollution, and therefore that smoke exposure provides a good setting 

in which to investigate the relationship between background pollution and the effect of pollution shocks. 

Panel C of Figure 6 plots the relationship between the mortality effect of smoke exposure and background 

pollution, which exhibits a clear downward trend.  The linear estimate predicts that a 1 ug/m3 increase in 

the background PM2.5 decreases mortality effects of a smoke day by 0.212 death per million when the 

average smoke effect is 0.522 death per million.  As can be seen in Panel C of Figure 5, the magnitude of 

this effect is important, suggesting large mortality effects in the cleanest areas, but almost zero effect in the 

dirtiest. 

A natural question at this point is whether our background pollution measure is picking up some 

other variable that may be confounding the results.  In particular, since poor areas are likely to be more 

polluted and exhibit higher mortality rates, one might wonder whether we are picking up a trend in poverty 

rather than in background pollution.  Panel B of Table 3, presents regression results where we include 

interactions of background pollution with smoke exposure and the fraction of the ZIP code below 200 

percent of the federal poverty line with smoke exposure.  In regressions including both interactions, we find 

that the negative relationship between smoke-related mortality and background pollution is significantly 

                                                      
15 To the extent that smoke causes transient increase in PM2.5 concentration, there is scope for smoke frequency to be 

positively correlated with background pollution. In practice, we find smoke frequency is not explanatory of 

background pollution measured as long-term (8-year) average PM2.5. In appendix, we report that our main conclusions 

in this section are not sensitive to alternative definitions of background pollution, e.g., using only PM2.5 readings from 

non-fire seasons, or using PM2.5 readings before the beginning point of our study period.  
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different from zero, while the coefficient on the smoke-by-poverty variable is small and not statistically 

significant.  Thus, the interaction with respect to background PM2.5 cannot be explained by the effect 

heterogeneity by income levels. We also find that the heterogeneity also holds in multi-day mortality 

regressions; in fact, the relative strength of this effect appears to grow larger as we expand the look-ahead 

window. 

We explore heterogeneity in healthcare use related to baseline pollution and poverty in Panel B of 

Table 4.  Despite the negative relationship between background pollution and smoke related mortality, we 

find no relationship between background pollution and healthcare use.  Thus, it does not appear that the 

healthcare system plays a role in moderating the impact of smoke exposure on mortality in high-pollution 

places, at least on average. 

Interesting results do appear when we consider the interaction between smoke related healthcare 

use and poverty, where we find a positive relationship: smoke in poor areas increases healthcare use more 

than in wealthier areas.  Further, this effect is driven almost entirely by increased use of outpatient ER 

services in poorer areas after smoke exposure.  Since this is not associated with a similar increase in 

mortality on in ER visits that result in admission, it suggests that outpatient ER visits are being used more 

in poor areas to provide routine care in less serious cases that otherwise might be provided by a visit to a 

primary care physician.  

 Of course, the heterogeneity analysis does not reveal the causal impact of background PM2.5 level: 

areas with different levels of air pollution can be different in many observable and unobservable ways, such 

as the level of investments in public protection against pollution exposure. Nevertheless, our results may 

be informative for policy makers. For example, the national PM2.5 standard is set by the EPA at a daily 

average of 12 ug/m3. A disproportionate amount of resources are devoted by both the federal and the local 

governments to the protection of public health in counties where pollution level is above this standard. 

However, we show that, at least when exposed to transient pollution variations, there is no evidence that 

individuals living in highly-polluted counties experience significant mortality effects. While quantifying 

the benefits of reducing average level of pollution is beyond the scope of this study, our results do suggest 

that resources may be deployed more effectively by focusing on reducing pollution shocks in less-polluted 

areas. 

 

7. Conclusion 

 This paper provides the first national-scale analysis of the causal relationship between wildfire 

smoke exposure. By combining satellite-based data on all wildfire smoke plumes affecting the US with 
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healthcare data on the universe of Medicare beneficiaries over a 9 year period, we are able to examine this 

relationship in greater detail and with greater statistical precision than earlier work.  We document, for the 

first time, a strong, positive direct link between smoke exposure and adult mortality and show that the 

mortality effect of smoke exposure grows over time, suggesting that the mortality results are not merely 

due to short term harvesting.  We also find that smoke exposure increases hospitalizations (all-cause and 

for circulatory and respiratory causes), emergency room visits, and healthcare spending.  Comparing the 

health-care cost of smoke exposure to the mortality cost, we find that in the short run health care costs are 

about one third as large as the mortality costs using conventional figures for the value of a statistical life 

year.   

Although there have been a number of studies looking at the health effects of wildfire smoke 

exposure, as discussed in the introduction, the evidence in these studies has been inconsistent.  This is true 

both within studies (e.g., finding hospitalization effects for some causes or subpopulations but not overall) 

and across studies, and despite the fact that the link between the pollutants generated by wildfires (e.g., 

particulate matter) and health is has been more clearly established.  One of the major contributions of this 

paper is that we are able to study how a wide variety of smoke events affect the universe of Medicare 

beneficiaries.  The result is that we find strong and consistent evidence across a variety of measures that 

smoke exposure negatively affects health. 

 The geographic and temporal detail and scope of our data allow us to examine several questions 

related to the intensity and duration of smoke exposure and health effects. We find that the effect of smoke 

does not appear to be cumulative, with the marginal effect of being exposed to smoke for an additional day 

increasing with the length of the smoke episode. On the other hand, comparing the impact of smoke 

exposure on areas that are generally polluted with areas that are generally not polluted, we find that the 

mortality impact of smoke exposure is larger in areas that are generally less polluted. 

 This result is potentially important for policy makers. Generally speaking, anti-pollution resources 

are tend to be targeted at more polluted areas. However, our results suggest that, if pollution shocks are 

generally more harmful in cleaner areas, these resources may be deployed more effectively by focusing on 

reducing pollution shocks in less-polluted areas. 
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Figure 1: The Rim Fire (California 2013) and Air Pollution
Panel A. Satellite picture of the Rim fire (August 22, 2013)

Reno, NV 

San Jose, CA 

Panel B. PM2.5 concentrations in San Jose, Reno, and Beijing
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Notes: Panel A shows satellite picture of the Rim Fire (source: NASA Earth Observatory). Red cross highlights city of Reno,
Nevada and blue cross highlights San Jose, California. Panel B shows daily PM2.5 concentration in San Jose (ZIP code 95118)
and Reno (ZIP code 89501). 5-day moving average PM2.5 during the same time period is shown for Beijing, China (source: U.S
Embassy Beijing Air Quality Monitor program).
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Figure 2: Smoke Plume Dynamics of the Rim Fire

Notes: Graph show six daily snapshots of smoke plumes in the western US around Rim fire eruption. Polygon shapes represent
smoke plumes. Red spots show places where MODIS satellite algorithm detects unusually warm surface temperatures associated
with wildfires. Plume contours are presented to show relative thickness of the smoke plumes, although the density information
does not represent actual ground level particulates concentration.
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Figure 3: Average Wildfire and Smoke Exposure by ZIP Code, 2006-2012
Panel A. Annual number of wildfires

Panel B. Annual number of smoke days

Notes: Panel A plots average annual number of wildfires using records from seven major wildland management agencies (Bureau
of Indian Affairs, Bureau of Land Management, Bureau of Reclamation, California Department of Forestry and Fire Protection,
National Park Service Fire and Aviation Management, US Fish & Wildlife Service, and Forest Service). Panel B plots average
annual number of wildfire smoke exposure days.
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Figure 4: Event Study: Wildfire Smoke Exposure
L: Raw trend R: Leads & lags coefficients
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Panel C. Healthcare utilization rate
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Notes: Left panels show mean outcomes within a 40-day window around the coded smoke day (event day = 0), controlling for
day-of-year fixed effects and day-of-week fixed effects with no other controls. Right panels show baseline regression coefficients on
7 smoke leads, contemporaneous smoke, and 6 smoke lags. Bars show 95% confidence intervals constructed using standard errors
clustered at the county level.
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Figure 5: Heterogeneity by Average PM2.5 Concentration
Panel A. Smoke Exposure Heterogeneity
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Notes: Figure plots heterogeneity by bins of county’s decile average daily PM2.5 concentration from 2005-2013. Mean PM2.5
concentration (µg/m3) is shown on the x-axis. Panel A plots average number of smoke exposure days by PM2.5 deciles. Panel B
plots heterogeneous PM2.5 effects of a smoke day by PM2.5 deciles. Panel C plots heterogeneous mortality effects of a smoke day
by PM2.5 deciles. In all panels, dots show coefficient for each decile. Dashed lines show the slope of the decile estimates, obtained
from separate regressions where the dependent variable is a running measure of average daily PM2.5 concentration rather than
bins. 24



Table 1: Summary Statistics
(1) (2) (3)

Mean Std. dev. N (ZIP Codes)

Panel A. Wildfire & smoke

Distance to wildfire, all days (miles) 879 593 29,995
Distance to wildfire, smoke days (miles) 383 414 29,982

Smoke exposure (%) 6.37 24.41 29,814

Panel B. Health & utilization, Medicare-eligible

Number of beneficiaries 1,255 1,662 29,812
Mortality rate 125.58 316.36 29,812

Panel C. Health & utilization, Medicare Fee-for-service

Number of beneficiaries 935 1,218 29,800
Mortality rate 131.96 375.03 29,800

Inpatient admissions rate 1,121.36 1165.13 29,800
Outpatient emergency room visit rate 842.79 1029.67 29,800
Inpatient spending 12,624,974 18,826,172 29,800
Outpatient spending 4,053,705 5,617,540 29,800

Notes: Statistics are computed over ZIP Code-daily observations. Except for number of beneficiaries, all statistics are weighted
by number of living Medicare beneficiaries aged 65 and over. Rates are per million beneficiaries. Spending variables are dollar per
million beneficiaries.
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Table 2: Effects of Wildfire Smoke on Air Pollution
(1) (2) (3) (4) (5) (6)

PM2.5 PM10 O3 CO NO2 SO2
Unit of measure: µg/m3 µg/m3 ppm ppm ppb ppb
Clean Air Act standards: 35 150 0.070 9 53 75

1(Smoke) 2.257*** 3.916*** 0.0027*** 0.015*** 0.746*** 0.200***
(0.079) (0.101) (0.0001) (0.001) (0.051) (0.016)

Mean dep. var. 10.69 23.39 0.027 0.401 13.07 2.13
Std. effect 0.310 0.228 0.246 0.067 0.084 0.056
F -stat 548.5 316.7 312.0 55.3 194.7 49.8
N 25,650,859 15,847,612 38,524,141 23,944,366 23,520,486 27,386,570
N (counties) 1,691 1,292 1,826 728 827 1,119

Notes: NAAQS standards are shown for PM2.5 (24 hours), PM10 (24 hours), O3 (8 hours), CO (8 hours), NO2 (1 year), and SO2 (1
hour). Regressions control for ZIP Code×week-of-year fixed effects, day-of-week fixed effects, state×year fixed effects, 3-day smoke
leads and lags, 10-degree daily temperature bins, and quadratic daily precipitation. Standard errors are clustered at the county
level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

Table 3: Effects of Wildfire Smoke on Mortality
(1) (2) (3) (4)

PM2.5 Mortality Mortality Mortality
µg/m3 1-day 3-day 7-day

Panel A. Average effects

1(Smoke) 2.259*** 0.522*** 1.204*** 1.434***
(0.081) (0.167) (0.237) (0.312)

Mean dep. var. 10.69 125.58 376.62 878.21
N 25,525,917 84,466,933 84,466,933 84,466,933

Panel B. Effects by general pollution and poverty characteristics

1(Smoke) × Avg. PM2.5 -0.065 -0.172** -0.489*** -0.993***
(0.058) (0.077) (0.168) (0.315)

1(Smoke) × Poverty200% FPL 0.006* 0.005 0.041 0.080
(0.003) (0.013) (0.167) (0.049)

1(Smoke) 2.272*** 0.601*** 1.392*** 2.069***
(0.072) (0.186) (0.272) (0.386)

N 25,033,137 61,807,795 61,807,795 61,807,795

Notes: Outcome variables are ZIP Code-daily pollution (column 1) and mortality rates in the next k-day window, where k = 1, 3, 7
as indicated by column names (column 2 - 4). Regressions control for ZIP Code×week-of-year fixed effects, day-of-week fixed effects,
state×year fixed effects, 7 smoke leads and 6 smoke lags, 10-degree daily temperature bins, and quadratic daily precipitation. Both
“Avg. PM2.5” (ug/m3) and “Poverty200% FPL” (percent) are de-meaned. Standard errors are clustered at the county level. *: p <
0.10; **: p < 0.05; ***: p < 0.01. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 4: Effects of Wildfire Smoke on Healthcare Utilization
(1) (2) (3)

General Inpatient Outpatient
utilization admissions ER visits

Panel A. Average effects

1(Smoke) 9.282*** 5.892*** 3.390***
(0.901) (0.692) (0.534)

Mean dep. var. 1,964.35 1,121.36 842.79
N 84,435,934 84,435,934 84,435,934

Panel B. Effects by general pollution and poverty characteristics

1(Smoke) × Avg. PM2.5 0.364 0.576 -0.212
(0.517) (0.372) (0.331)

1(Smoke) × Poverty200% FPL 0.363*** 0.062 0.300***
(0.080) (0.061) (0.055)

1(Smoke) 9.643*** 5.490*** 4.153***
(1.074) (0.813) (0.644)

N 61,807,795 61,807,795 61,807,795

Notes: Regressions control for ZIP Code×week-of-year fixed effects, day-of-week fixed effects, state×year fixed effects, 7 smoke
leads and 6 smoke lags, 10-degree daily temperature bins, and quadratic daily precipitation. Both “Avg. PM2.5” (ug/m3) and
“Poverty200% FPL” (percent) are de-meaned. Standard errors are clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p <
0.01. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 5: Effects of Wildfire Smoke on Other Healthcare Utilization
(1) (2) (3)

General Inpatient Outpatient
ER visits spending spending

1(Smoke) 5.774*** 76,678*** 113,617***
(0.689) (11,487) (9,288)

Mean dep. var. 1,399.351 12,624,974 4,053,705
N 84,435,934 84,435,934 84,435,934

Notes: Outcome variables are ZIP Code-daily utilization as indicated by column names. In column 2 and 3, spendings are in $
per million FFS beneficiaries. Regressions control for ZIP Code×week-of-year fixed effects, day-of-week fixed effects, state×year
fixed effects, 3-day smoke leads and lags, 10-degree daily temperature bins, and quadratic daily precipitation. Standard errors are
clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

Table 6: Effects of Wildfire Smoke on Healthcare Utilization: Diagnosis-Specific Effects
(1) (2) (3) (4) (5) (6) (7)

Diagnosis: Circ Resp Injury Digest Neop Infect Urology

Panel A. Dep. var. = emergency room visits (per million)

1(Smoke) 1.131*** 0.384* 2.028*** -0.189 0.069 0.156 0.668***
(0.263) (0.208) (0.294) (0.175) (0.073) (0.124) (0.174)

Mean dep. var. 216.75 146.77 246.90 109.62 17.24 48.34 86.76

Panel B. Dep. var. = hospitalization rate (per million)

1(Smoke) 1.805*** 0.833*** 0.494*** -0.067 0.267** 0.213 0.499***
(0.290) (0.203) (0.162) (0.160) (0.121) (0.131) (0.154)

Mean dep. var. 260.51 133.66 94.97 93.45 47.70 49.99 67.84

Notes: Outcome variables are diagnosis-specific ZIP Code-daily emergency room visits (panel A) and hospitalization rate (panel
B). ICD-9 codes used are circulatory (390-459), respiratory (460-519), injury (800-999), digestive (520-579), neoplasm (140-239),
infection (001-139), and genitourinary (580-629). Regressions control for ZIP Code×week-of-year fixed effects, day-of-week fixed
effects, state×year fixed effects, 3-day smoke leads and lags, 10-degree daily temperature bins, and quadratic daily precipitation.
Standard errors are clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Figure A.1: Trends: Other Health Care Utilization around Wildfire Smoke Exposure
Panel A. Emergency room visits
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Notes: Figure presents mean daily utilization within a 40-day window around the coded smoke day (event day = 0). Sample
includes all Medicare fee-for-service beneficiaries aged 65 and over. There are 6,511,390 smoke events at the ZIP Code-day level.
Panel names indicate outcome variables. All regressions control for day-of-year fixed effects and day-of-week fixed effects with no
other controls.
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Figure A.2: Heterogeneity by Average PM2.5 Concentration: Robustness
Panel A. Smoke Exposure Heterogeneity
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Notes: Average daily PM2.5 concentration defined using all data (blue circles); excluding June - September data (green squares); June - September data (red crosses);
excluding smoke ZIP Code×days (orange triangles)
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Table A.1: Specification Checks: Alternative Fixed Effects Strategies
Indep. var. = Smoke

(1) (2) (3) (4) (5) (6)

PM2.5 (ug/m3) 2.213*** 2.300*** 2.245*** 2.336*** 2.185*** 2.262***
(0.076) (0.078) (0.075) (0.073) (0.084) (0.082)

Same-day mortality 0.400** 0.282 0.520*** 0.451** 0.512*** 0.474**
(per million) (0.167) (0.178) (0.167) (0.180) (0.193) (0.195)

Same-day inpatient$ 65,796*** 22,299* 69,507*** 24,081* 68,794*** 25,496*
(per million FFS) (12,581) (12,517) (12,567) (12,773) (12,726) (13,226)

Same-day outpatient$ 113,068*** 13,829** 120,561*** 15,831*** 117,006*** 12,231**
(per million FFS) (9,467) (5,599) (9,378) (5,710) (7,846) (5,903)

FE: ZIP X X
FE: ZIP×wk-of-yr X X
FE: ZIP×day-of-yr X X
FE: Yr X X X
FE: Wk-of-yr X
FE: Day-of-week X X X
FE: Date X X X

Notes: Each column presents a different fixed effects strategies. All regressions control for 3-day smoke leads and lags, 10-degree
daily temperature bins, and quadratic daily precipitation. Standard errors are clustered at the county level. *: p < 0.10; **: p <
0.05; ***: p < 0.01.
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Table A.2: Specification Checks: Alternative Controls and Samples
Indep. var. = Smoke

(1) (2) (3) (4)
PM2.5 Mortality Inpatient$ Outpatient$
(ug/m3) (per mil) (per mil FFS) (per mil FFS)

A. Alternative smoke measure

“Deep” smoke 2.392*** 0.529*** 85,816*** 128,527***
(0.081) (0.183) (13,325) (10,691)

B. Alternative weather controls

No weather ctrls. 2.667*** 0.654*** 86,428*** 117,876***
(0.087) (0.163) (11,332) (8,700)

Temperature bins × states 2.182*** 0.569*** 77,252*** 116,563***
(0.071) (0.164) (11,278) (9,106)

Wind direction bins × states 2.046*** 0.463*** 74,152*** 114,497***
(0.067) (0.167) (11,415) (9,212)

C. Alternative smoke leads & lags

No leads & lags 3.032*** 0.635*** 72,804*** 132,429***
(0.100) (0.151) (10,330) (8,607)

7 leads & 7 lags 2.265*** 0.510*** 73,304*** 117,005***
(0.082) (0.167) (11,544) (9,285)

20 leads & 20 lags 2.214*** 0.468*** 67,682*** 121,189***
(0.083) (0.170) (11,313) (9,624)

D. Subsamples

May to September only 2.295*** 0.486*** 72,080*** 151,822***
(0.087) (0.184) (12,444) (9,600)

Western U.S. only 1.316*** 0.890** 35,878 54,414**
(0.113) (0.382) (25,906) (26,623)

Eastern U.S. only 2.471*** 0.460** 86,987*** 126,208***
(0.073) (0.185) (12,475) (9,478)

Notes: Each row presents a different specification. As a baseline, all regressions control for 3-day smoke leads and lags, 10-degree
daily temperature bins, and quadratic daily precipitation. “Deep smoke” indicates days when a ZIP Code is entirely covered by
smoke plume. “Wind direction bins” is daily wind direction at the centroid of the ZIP Code’s parent county, categorized into 60-
degree bins. “May to September” is the usual wildfire season in our data. “Western U.S.” refer to the states of Arizona, California,
Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. “Eastern U.S.” are lower 48 states
except the western states. Standard errors are clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.3: Effects of Wildfire Smoke on Diagnosis-Specific Emergency Room Visits and Hospitalization:
Cardiovascular and Respiratory Diagnoses

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Circulatory Respiratory

Ischemic Heart Cerebro- Peripheral
heart rhythm Heart vascular vascular

Diagnosis: disease disturbance failure events disease Others COPD URTI LRTI Asthma Others

Panel A. Same-day emergency room visits (per million)

Smoke 0.189** 0.031 0.184* 0.357*** 0.041 0.330* -0.051 -0.064* 0.477*** 0.073 -0.051
(0.085) (0.029) (0.110) (0.109) (0.039) (0.175) (0.107) (0.035) (0.120) (0.046) (0.100)

Mean dep. var. 23.93 2.15 45.60 38.95 4.90 101.3 42.83 4.25 53.33 8.78 37.35

Panel B. Same-day hospitalization rate (per million)

Smoke 0.185** 0.036 0.296** 0.528*** 0.069 0.690*** 0.054 0.008 0.682*** 0.031 0.058
(0.093) (0.034) (0.123) (0.116) (0.070) (0.189) (0.094) (0.009) (0.128) (0.037) (0.108)

Mean dep. var. 27.33 2.94 55.92 46.29 14.61 114.36 34.01 0.288 54.32 6.12 39.13

COPD = Chronic obstructive pulmonary disease
URTI = Upper respiratory tract infections
LRTI = Lower respiratory tract infections

Notes: Outcome variables are diagnosis-specific ZIP Code-daily emergency room visits (panel A) and hospitalization rate (panel B).
ICD-9 codes used are ischemic heart disease (410-414, 429), heart rhythm disturbance (426-427), heart failure (428), cerebrovascular
events (430-438), peripheral vascular disease (440-449), COPD (490-492, 494, 496), URTI (460-465), LRTI (466, 480-487), and
asthma (493). Regressions control for ZIP Code×week-of-year fixed effects, day-of-week fixed effects, state×year fixed effects,
3-day smoke leads and lags, 10-degree daily temperature bins, and quadratic daily precipitation. Standard errors are clustered at
the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.4: Effects of Wildfire Smoke on Diagnosis-Specific Emergency Room Visits and Hospitalization: Injury and Genital Diagnoses
(1) (2) (3) (4) (5) (6)

Injury Genital

Diagnosis: Bone frac Med complic Othrs UTI Renal fail Othrs

Panel A. Same-day emergency room visits (per million)

Smoke 0.493*** 0.007 1.528*** 0.290** 0.288*** 0.090
(0.152) (0.085) (0.237) (0.122) (0.077) (0.097)

Mean dep. var. 66.27 22.86 157.2 43.75 14.87 27.90

Panel B. Same-day hospitalization rate (per million)

Smoke 0.166 0.164* 0.164** 0.151* 0.256*** 0.093
(0.119) (0.091) (0.075) (0.091) (0.084) (0.082)

Mean dep. var. 48.68 28.36 18.19 27.12 18.57 22.28

UTI = Urinary tract infections

Notes: Outcome variables are diagnosis-specific ZIP Code-daily emergency room visits (panel A) and hospitalization rate (panel B). ICD-9 codes used are bone
fracture (800-829), medical care complication (996-999), urinary tract infection (5990), and renal failure (5849). Regressions control for ZIP Code×week-of-year fixed
effects, day-of-week fixed effects, state×year fixed effects, 3-day smoke leads and lags, 10-degree daily temperature bins, and quadratic daily precipitation. Standard
errors are clustered at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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