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... This nation should commit itself to achieving the goal, before this decade is out, of landing

a man on the moon and returning him safely to the earth.

John F. Kennedy, May 25, 1961.1

1 Introduction

With the above statement, President Kennedy shifted the nation’s effort in space from “low to high

gear.”2 Later that year, Kennedy clarified this statement, saying that the moon mission would

involve the considerable expense of developing new rockets, materials, and control systems, but

that the U.S. must boldly “do all this, and do it right, and do it first before this decade is out.

...[W]e must pay what needs to be paid.”3 According to Kennedy shortly before his death, “this

Nation has tossed its cap over the wall of space, and we have no choice but to follow it. Whatever

the difficulties, they will be overcome. Whatever the hazards, they must be guarded against.”4

Kennedy’s position presented a strong challenge to the Soviet Union: the U.S. would do whatever

was necessary to win the international prestige associated with being first to the moon. An

alternative phrasing of Kennedy’s policy would have been to declare that the U.S. would spend

$20 billion on the Apollo project during the 1960’s, without specifying a final goal. However, the

Soviets would have been expected to react differently had Kennedy adopted this approach. After

all, dealing with an opponent who is determined to win at all costs is different than dealing with

an opponent who states just how far he is willing to go to succeed. In light of this, one might

ask whether it was prudent for Kennedy to adopt a goal-oriented (output-setting) rather than a

budget-oriented (input-setting) posture.

This paper considers the strategic importance of the choice between input and output strategies,

an issue that is not unique to the space race. In a wide range of settings, from fixing an advertising

budget to developing a negotiations strategy, participants have the choice between specifying an

1“Special Message to Congress on Urgent National Needs.” Available from the John F. Kennedy Library at

http://www.cs.umb.edu/jfklibrary/j052561.htm.
2“Address at Rice University on the Nation’s Space Effort,” Houston, Texas, September 12, 1962. Available

from the John F. Kennedy Library at http://www.cs.umb.edu/jfklibrary/j091262.htm. See Beschloss (1997) for a

discussion of Kennedy’s decision to go to the moon.
3 Ibid.
4“Remarks at the Dedication of the Aerospace Medical Health Center” San Antonio, Texas, November 21, 1963.

Available from the John F. Kennedy library at http://www.cs.umb.edu/jfklibrary/jfk_san_antonio_11-21-63.html.
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output strategy — a goal that they will reach at any cost — or an input strategy — the cost that they

are willing to incur in pursuit of their goal. Depending on which posture is adopted, the other

parties to the relationship will react differently, and this may cause the players to prefer one or the

other posture.

We analyze games in which each player’s payoff depends on two variables, an input and an

output, which respectively correspond roughly to the (dollar-valued) costs and benefits associated

with a project. In an R&D contest, the input is the firm’s research expenditure, while the output is

its expected benefit (i.e., the value of the “prize” times the probability of winning). In oligopolistic

competition, the input might be advertising expenditure or investment in cost reduction, while the

output is revenue.5 Each player’s goal is to maximize the difference between his output and input.

When there are two players, the structure of the game is captured by four quantities, an input

and an output for each player. Each player can approach the game either by setting his input and

allowing his output to be determined by the environment and the other player’s strategy, or by

setting his output and letting his input be determined by the environment and the other player’s

strategy. Following Jéhiel and Walliser (1995), we call the variable that the player chooses the

“leading” variable, and the one that is determined by the environment the “following” variable.

In our basic model we consider two-stage games in which, in the first stage, the players decide

whether to lead input or output. After each player has chosen his leading variable, the choices

become common knowledge. In the second stage the players compete in a simultaneous-move

game, each choosing the specific value of his leading variable.6 There are four potential second-

stage games: both players lead input, both players lead output, and the two mixed cases where one

player leads input and the other leads output. We are primarily concerned with the question of

whether a player should lead input or output, and so we focus our attention on the “meta-game,”

the 2x2 game in which the players’ strategies are whether to lead input or output and the payoffs

are the Nash equilibrium payoffs of the resulting second-stage game.

The main part of the analysis focuses on the case where players are “similar” in the sense that

the sign of the effect of increasing player 1’s input on player 2’s output is the same as the sign of the

effect of increasing player 2’s input on player 1’s output. In this case, the main result is that each

5Our use of “input” and “output” is somewhat non-standard. In particular, our use is different than the use in

production theory, where inputs include labor and capital and output is measured in units produced.
6 In order to be clear, throughout the paper we will differentiate between choosing a leading variable (e.g., an

advertising budget) and choosing the specific value of a leading variable (e.g., spend $2 million on advertising).
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player has a dominant strategy to lead input in the meta-game whenever both players’ outputs are

increasing in the other player’s input. Conversely, leading output is a dominant strategy whenever

both players’ outputs are decreasing in the other player’s input. Because of these dominance

relations, the meta-game always has a unique equilibrium.

The results of the paper are driven by the strategic effects of a player’s choice of leading variable,

i.e., the fact that a player’s optimal strategy differs depending on whether he believes his rival to

be leading input or output. In particular, we show that, holding fixed the rival player’s behavior,

a player is indifferent between setting input or setting output. However, when the players are

similar, leading output induces a player’s rival to behave less aggressively (i.e., use less input) than

he would if the player had led input. When the player’s output is increasing in his opponent’s

input, he wants the rival to choose a large input, and leading input encourages his opponent to do

so. On the other hand, when the player’s output is decreasing in his opponent’s input, he wants

the rival to choose a small input, and leading output encourages this.

As in any model of strategic interaction, these strategic effects only manifest themselves if the

players’ commitments are credible, and this credibility may be difficult to achieve. However, it is

important to note that our game is one in which the players never act against their own interest.

In other words, this game does not have the flavor of an entry deterrence game, where players may

threaten to take actions later in the game that are not ex post optimal (e.g., start a price war

against a rival who enters the market). In our game, for any choice of leading variables, both

players are on their best response curves in the subsequent subgame. Consequently, this is not a

game in which commitments are inherently non-credible.

The dominance relations underlying the main results are robust, and we illustrate this by

extending the basic model in several directions. We begin by showing that the main results hold in

Stackelberg-style games in which the first mover commits to a specific strategy (e.g., achieve $30M

in sales) and the second mover then responds optimally to that commitment. In a second extension,

we consider the case where committing to output strategies is costly and partial commitments are

possible. Although the players’ basic incentives persist, in cases where a player prefers to lead

output the extent to which he commits to doing so may be limited by the costs involved. Finally,

we introduce uncertainty into the model. While the strategic incentives identified in our basic

model continue to be important, the stochastic nature of the problem introduces other effects

that complicate the analysis. Nevertheless, when uncertainty is not too severe the results on the
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dominance of leading input or output persist. Even when uncertainty is very severe the strategic

effect we identify in our basic model remains, and it must be considered along with these new effects

in deciding whether to set input or output.

Our goal in this paper is to illustrate the role of strategic effects in determining whether players’

should prefer to lead input or output. Our basic model clearly illustrates the nature of these ef-

fects, and the extensions show that the effect persists in more complicated environments. However,

real-world strategic interactions are significantly more complicated than our model. In particular,

as in the space race, there are important dynamic considerations that we do not consider here.

A complete analysis of whether firms should lead input or output in an uncertain, changing envi-

ronment would require an explicit theory of when and how firms can credibly commit to one or

the other leading variable over time. This is a formidable problem in itself, and one that is not

directly related to our main focus — analyzing the nature of the strategic interaction when such

commitments are possible. Our basic theoretical results are best interpreted as statements regard-

ing what can be achieved when commitments are possible and costless to achieve, the extensions

as illustrations of the complications that arise in more realistic models, and our applications as

attempts to illustrate situations in which commitments either have been, or could be, effective.

The analysis in this paper is related to the literature on price vs. quantity competition, which

considers whether firms competing as oligopolists should choose to compete à la Cournot, setting

quantities and letting prices be determined by the market, or à la Bertrand, setting prices and letting

market-clearing quantities be determined by the market. For example, Singh and Vives (1984) and

Cheng (1985a) show that for a range of reasonable demand structures, it is a dominant strategy

for the players to choose to set quantities (prices) when the goods are substitutes (complements).7

These results rely on two basic ideas: that, holding fixed the rival’s price or quantity, firms are

indifferent between setting price or quantity, and that firms react more aggressively (i.e., choose

lower prices and higher quantities) to a price-setting rival than to a quantity-setting rival. Thus,

when the firms sell substitutes and want their rival to be accommodating, they set quantities,

whereas when they sell complements and want their rival to be aggressive, they set prices. Although

our analysis follows a similar line of argument, our model is distinct, our applications are novel,

and we present new technical extensions.

Jéhiel and Walliser (1995) consider generalized duopoly games in which identical players have a

7Klemperer and Meyer (1986) consider the impact of uncertainty on whether price- or quantity-setting is superior.
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choice between two different control variables. For either player, fixing one of the variables deter-

mines the other, and the authors show that, for a broad class of games, one symmetric equilibrium

(i.e., where both players choose the same leading variable) dominates the other.

Although related, the generalized duopoly structure of Jéhiel and Walliser (1995) is not par-

ticularly helpful in understanding the theoretical question of input versus output setting and the

practical applications we have in mind. Unlike in our model, where we differentiate between input

and outputs, both of Jéhiel and Walliser’s control variables are inputs, which combine (with the

other player’s variables) to determine the player’s utility. Further, the Jéhiel and Walliser analysis

assumes that the relationship between the various control variables is linear, which does not seem

appropriate for the applications we have in mind.8

The paper proceeds as follows. Section 2 describes the model. Section 3 characterizes the

equilibrium of the game and proves the main result. Section 4 compares the equilibria of the

various types of second-stage competition when inputs are strategic complements. Section 5

develops some extensions, Section 6 discusses applications, and Section 7 concludes the body of the

paper. Appendix A contains additional technical material and all of the proofs, and Appendix B

contains a brief discussion of how the results extend to more general payoff functions.

2 The model

Consider a two-player game in which each player has two control variables, an input and an output.

Throughout the paper, denote a generic player by i and the other player by j. Denote player i’s

input variable by xi and his output variable by yi. Given xi and yi, player i’s payoff is πi = yi−xi.
The most natural interpretation of the variables is that xi is the input cost incurred by the firm,

and yi is the gross benefit achieved by the firm, both measured in dollars.9

The four control variables, x1, x2, y1, and y2 are related in such a way that if player 1 chooses

either x1 or y1 and player 2 chooses either x2 or y2, these choices determine the values of the

remaining two variables. For example, suppose the input variable is advertising expenditure

and the output variable is profit from sales. Fixing advertising dollars by each player determines

each’s profit (assuming a particular pricing rule). Conversely, setting profit targets for each player

8 In Appendix B, we show that our theory can be extended to subsume Jéhiel and Walliser’s analysis.
9The results also hold if xi is measured in physical units and ci (xi), and increasing and convex function, measures

the dollar cost of using xi units of input.
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determines the advertising levels needed in order to support them. Finally, specifying profit for

one player and advertising for the other player determines the two remaining variables.

Formally, for each i ∈ {1, 2} let yi (xi, xj) be player i’s output as a function of both players’
inputs. Throughout the paper, we confine ourselves to non-negative input vectors that result in

non-negative output vectors. We denote the set of such vectors as Ω:

Ω = {(x1, x2, y1, y2) : x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0, y1 = y1 (x1, x2) , and y2 = y2 (x2, x1)} .

Since fixing one variable for each player determines the other two variables, we will call a strategy

pair consisting of one variable for each player admissible if the quadruple it induces is an element

of Ω. Strategy pairs that are not admissible induce input-output combinations that are physically

impossible given the technology. Hence throughout the paper we restrict players’ best responses

to be drawn from Ω.

Function yi (xi, xj) gives output when both players choose input as leading. We also define

functions that, for any combination of leading variables, give the corresponding following variables.

Let xi (yi, yj) be the input player i must provide in order to achieve output level yi when player

j’s output is fixed at yj , obtained by solving identities yi (xi, xj) ≡ yi for xi and xj . Let ỹi (xi, yj)

be the value of yi that results when player i chooses xi and player j chooses yj . Similarly, let

x̃i (yi, xj) be the level of input player i must provide in order to achieve output yi when player j

chooses input xj . Formally, the functions are related as follows:10

yi (xi (yi, yj) , xj (yj , yi)) ≡ yi xi (yi (xi, xj) , yj (xj , xi)) ≡ xi

ỹi (xi (yi, yj) , yj) ≡ yi x̃i (yi (xi, xj) , xj) = xi.

Throughout the paper, we assume that each of yi (·, ·) , xi (·, ·) , ỹi (·, ·) , and x̃i (·, ·) is twice
differentiable in each of its arguments and strictly increasing in its first argument. We assume the

following regularity condition, which, among other things, ensures that xi (·, ·) and yi (·, ·) can both
be increasing in their first arguments:

∂yi
∂xi

∂yj
∂xj
− ∂yi

∂xj

∂yj
∂xi

> 0. (1)

10Since the technical assumptions necessary to ensure global invertibility of this system impart little economic im-

port to the problem, we will simply assume that the functions are well-defined and that the input-output relationship

is invertible. See Cheng (1985b) for the technical assumptions necessary in the case of a system of demand functions.
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Assumption (1) amounts to assuming that the “own effects” of increasing one’s strategy are larger

than the “cross effects”. When player i increases his input, this directly increases yi, but it also

affects yj . If player j has committed to an output target, he must adjust xj in order to compensate,

and this compensation, in turn, affects yi. If the expression in (1) is negative, then the effect of

player j’s reaction to the increase in xi outweighs the direct effect on yi, and the overall effect of

increasing xi is to decrease player i’s output. Condition (1) rules out these situations.11

In order to ensure that the players’ best responses are unique, we assume that yi (xi, xj) is

strictly concave in xi, and that xi (yi, yj) is strictly convex in yi.12 Further, since many of the

results in the paper are driven by the sign of ∂yi
∂xj
, we assume that the sign of this partial derivative

is independent of the particular input vector at which it is evaluated. That is, either ∂yi
∂xj

> 0 for

all admissible (xi, xj) or
∂yi
∂xj

< 0 for all admissible (xi, xj). When
∂y1
∂x2

and ∂y2
∂x1

have the same sign

we call the players similar. When they have opposite signs we call the players dissimilar.

In the main part of the analysis we consider two-stage games where, in the first stage, each

player chooses whether to lead input or output. After the choices have been made, the two leading

variables become common knowledge. In the second stage, the players compete by simultaneously

choosing the specific values of their leading variables. The equilibrium concept we will employ is

subgame perfect Nash equilibrium.

Examples

A number of examples illustrate cases in which these basic assumptions are and are not satisfied.

Example 1: Contests. Consider a situation where two players compete for a prize. The simplest

formulation of the problem is that the probability of player i winning the prize is proportional to

the ratio of his input to total input, i.e., yi (xi, xj) = A xi
xi+xj

, where A > 0 is the size of the prize.

However, since ∂yi
∂xi

∂yj
∂xj
− ∂yi

∂xj

∂yj
∂xi

= 0, this example does not satisfy (1).13

A natural contest model that satisfies (1) introduces a small positive probability that neither

11Alternatively, when the expression in (1) is negative, the iso-output curve for y1 is flatter than the iso-output

curve for y2 (when x1 is plotted on the horizontal axis and x2 is plotted on the vertical axis). In this case, the

situation where both players commit to output targets is inherently unstable. Small deviations from the case where

both firms meet their targets drive one firm out of the market (i.e., to choose xi = 0).
12Under these conditions, ỹi (xi, yj) is also strictly concave in xi.
13The reason (1) fails to hold is that knowing yi determines yj , since yi = A− yj , and so it is not possible to invert

the system to yield xi (yi, yj) and xj (yj , yi).
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party wins the prize. In this case, yi (xi, xj) = A xi
xi+xj+δ

, where δ > 0 captures the event that

neither party wins. In such a model, if player i chooses output strategy yi, implying winning

probability yi
A , the presence of δ > 0 allows player j to choose an output strategy implying a

winning percentage up to (but not including) 1− yi
A . As player j’s winning probability increases

to 1− yi
A , the input needed to sustain this winning probability increases to infinity.

14

Example 2: Competition with Investments. Suppose the players are firms that compete in a Cournot

oligopoly market with linear demand p = A− q1− q2. Firm i’s input is an investment that reduce

the its production cost. If c (xi) denotes the firm’s cost of producing a unit of output when its input

is xi, output is its profit before deducting investment costs, yi (xi, xj) =
(A−2c(xi)+c(xj))2

9 . This

specification satisfies (1) whenever production costs are small enough that the Cournot quantities

are non-negative. Output is concave in input provided c (xi) satisfies an additional regularity as-

sumption. A similar model where the firms produce differentiated products, inputs are advertising

expenditures and outputs are sales revenues also satisfies the conditions of our model.15

Example 3: Cournot Oligopoly. The standard Cournot oligopoly game can also be thought of in

terms of our model. In this game, inputs are expenditures on producing units of the good and

outputs are sales revenues. Condition (1) is satisfied whenever the elasticity of demand is uniformly

greater than 1 (in absolute value). Thus, for example, our assumptions are satisfied when inverse

demand takes the constant elasticity form: p = A (q1 + q2)
− 1
ε with A > 0 and ε > 1. Condition

(1) is not generally satisfied for linear demand p = A − q1 − q2, since demand becomes infinitely

elastic as total quantity increases.

3 Equilibrium choice of leading variables

We begin by characterizing the equilibria of the four second-stage games. We then use the results

to analyze the subgame-perfect equilibrium of the two-stage game and draw conclusions about the

desirability of input-leading and output-leading strategies. The analysis is similar in spirit to

Cheng (1985a).

14 In the event that the players choose strategies with impossible winning probabilities (i.e., yi+yj
A

> 1), it is

effectively as if both players have infinite input costs. We therefore restrict the game to input-outut quadruples that

imply non-negative inputs and outputs that sum to strictly less than A.
15Miller and Pazgal (2005) provides a complete analysis of several versions of the advertising model.
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To begin, assume that both players lead input. Player i’s optimization problem is to choose

xi to maximize yi (xi, xj)− xi, subject to (xi, xj) being admissible. Assuming an interior solution,

player i’s optimal reaction to xj is Ri (xj), implicitly defined by:16

∂yi (Ri (xj) , xj)

∂xi
≡ 1. (2)

Reaction function Ri (xj) is uniquely defined since yi (xi, xj) is strictly concave in xi. Further, we

make the natural assumption that Ri (0) > 0. That is, if player j chooses xj = 0, player i finds it

worthwhile to produce. When the players compete by setting inputs, the Nash equilibrium input

levels are given by x∗1 and x∗2 such that x∗1 = R1 (x
∗
2), and x∗2 = R2 (x

∗
1).

The following proposition helps to characterize the equilibria of the other types of competition.

Proposition 1 . Player i’s best response function depends on whether player j leads input or

output, but not on whether player i leads input or output.

The intuition behind Proposition 1 is straightforward. Player i’s optimization problem is to

choose the value of his leading variable that maximizes his profit, holding fixed the specific value

of player j’s leading variable. If player i leads input, his output follows; if player i leads output,

his input follows. Due to the invertibility assumptions, the resulting input-output pair is the same

in either case. Hence what player i is really doing is choosing an input-output pair in response

to the value of j’s leading variable, and it does not matter which variable leads and which follows.

On the other hand, the set of feasible input-output pairs that player i can choose from depends

on whether the other player leads input or output, which accounts for the dependence of player i’s

best response on his rival’s choice of leading variable.17

In light of Proposition 1, when deriving the equilibria under input leading and output leading

we assume that the players always lead input, but do so in response to conjectures that their

opponents either lead input or output. Alternatively, one can think of the arguments applying to

the projections of the various reaction functions into the input-input space.

We have already considered the case in which player i conjectures that his opponent leads input:

his best response function is given by Ri (xj), as defined in (2). Next, consider the case in which

16Throughout the paper, we focus on solutions to the players’ problems that are interior to Ω. The results change

only slightly if this assumption is relaxed. See Footnote 19.
17There is a close analogy between this argument and the discussion of the difference between price and quantity

competition. For example, see Singh and Vives (1984), Klemperer and Meyer (1986), and Miller and Pazgal (2001).
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player i leads input in response to an output-leading opponent. His optimization problem is to

choose xi to maximize ỹi (xi, yj) − xi, subject to (xi, yj) being admissible. Again assuming an

interior solution, differentiating with respect to xi and setting the result equal to zero yields:

∂ỹi (x
y
i (yj) , yj)

∂xi
≡ 1,

where xyi (yj) is player i’s best response to player j’s output choice yj .
18 Let ri (xj) be the projection

of xyi (yj) into the input-input space: ri (x̃j (x
y
i (yj) , yj)) ≡ xyi (yj). That is, holding fixed yj , x

y
i (yj)

implies the same relationship between xi and xj as ri (xj).

Proposition 2 describes the fundamental relationship between a player’s best response to an

input-leading opponent and his best response to an output-leading opponent.

Proposition 2 . If the players are similar, player i’s optimal input choice is larger when his opponent

leads input than when his opponent leads output. That is, Ri (xj) > ri (xj). If the players are

dissimilar, the opposite relationship holds: ri (xj) > Ri (xj).19

To illustrate the intuition behind Proposition 2, suppose the players are similar, and consider

player i. Player i does not directly care about yj , and he cares about xj only so much as it affects

his own output, yi. If player i believes player j is holding xj constant, player i reaps the entire

gain from increasing xi. On the other hand, if player j is holding his output fixed, then player i

conjectures that player j will match any change in xi with the corresponding change in xj necessary

to keep yj constant. For example, if increasing xi increases yj , then player j will respond to any

increase in xi by decreasing xj , which will in turn tend to decrease yi (by similarity). Hence

player j’s output-setting behavior dampens the effect on yi of an increase in xi. Since the marginal

benefit of increasing xi is now lower, player i is less inclined to increase his input, and his reaction

to output-setting is smaller than his reaction to input-setting. Figure 1, Panel A, depicts sample

reaction functions when players are similar. By Proposition 2, ri lies everywhere below of Ri.

When players are dissimilar, the opposite reasoning applies (see Figure 1, Panel B). When

player i leads input against an output-leading rival, player i anticipates that player j will respond
18Convexity of xi (yi, yj) in yi combined with the invertibility assumptions ensure that x

y
i (yj) is uniquely defined

for each yj . This can be confirmed by differentiating ỹi (xi (yi, yj) , yj) ≡ yi twice with respect to yi.
19 If we allow for the possibility of non-interior solutions to the players’ optimization problems, the inequalities

in Proposition 2 would be weak instead of strict, and the remainder of the results would follow with only slight

modifications.
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Figure 1: Similar and dissimilar players’ reactions to input- and output-leading rivals.

to any increase in xi by adjusting his input in order to keep his output constant. But, unlike in the

case of similar players, with dissimilar players this adjustment benefits player i. Thus, player j’s

compensation to maintain his output target increases the marginal benefit of an increase in input

by player i, which encourages player i to choose larger inputs than if he faced an input-leading

opponent.

Beyond insisting that they be single-valued when viewed as functions of xj , none of the condi-

tions imposed thus far restrict the shape of Ri or ri in any way.20 In the following section, we impose

conditions on the cross-partial derivatives of yi that restrict the shape of the reaction functions and

exploit these restrictions in order to draw conclusions about the relative magnitudes of equilibrium

inputs, outputs, and payoffs in the various specifications of the game. These conditions are not

needed to determine the equilibria, however, only to compare them.

In the second stage of the two-stage game there are four subgames to consider: both players

lead input (xx), both players lead output (yy), player 1 leads input and 2 leads output (xy), and

player 1 leads output and player 2 leads input (yx).21 The equilibria of these subgames are given

20Although we tend to draw Ri and ri as generally upward sloping, we do so for clarity of the diagrams rather than

because this shape is required by the model.
21Throughout the paper, we assume that in each of the four subgames the equilibrium is unique. One sufficient

condition for this to hold would be that the players’ best response functions are contractions. See, for example,

Vives (1999). Although the analysis is greatly simplified if there is a unique equilibrium in each second-stage game,

the analysis is unaffected by the possibility of multiple equilibria in some subgames. See, for example, Cheng

(1985a) for a discussion of this point in the context of the choice of prices or quantities as leading variables in a
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by the intersection of R1 and R2, r1 and r2, r1 and R2, and R1 and r2, respectively, as depicted

in Figure 2, Panel A, for the case of similar players.22 Panel B of Figure 2 depicts the case of

dissimilar players.
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 Similar Players Dissimilar Players 

Figure 2: Equilibria of the four subgames for similar and dissimilar players.

The two-stage game in which players choose leading variables and then choose the specific

values of their leading variables can be reduced to a 2x2 normal-form game — the “meta-game” —

the equilibrium of which is the subgame perfect equilibrium of the two-stage game. The payoffs

in the meta-game are given by the players’ payoffs at points xx, yy, xy, and yx in Figure 2.

Denote the equilibrium input vector when player 1 chooses s ∈ {x, y} as leading and player 2
chooses t ∈ {x, y} as leading as ¡xst1 , xst2 ¢. Let πi (xi, xj) = yi (xi, xj) − xi be player i’s profit as

a function of the input vector, and let πsti = πi

³
xsti , x

st
j

´
be player i’s equilibrium payoff when 1

leads with s and 2 leads with t. Table 1 depicts the normal form of the meta-game.

differentiated-products duopoly.
22Recall that r1 is player 1’s reaction curve to an output-leading opponent, and not player 1’s reaction curve when

he, himself, leads output.
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Player 2

Lead x2 Lead y2

Player 1 Lead x1 (πxx1 , πxx2 ) (πxy1 , πxy2 )

Lead y1 (πyx1 , πyx2 ) (πyy1 , πyy2 )

Table 1: The normal form of the meta-game.

The following Lemma establishes that πi changes monotonically along Ri and ri.

Lemma 1 . The signs of ∂πi(Ri(xj),xj)
∂xj

and ∂πi(ri(xj),xj)
∂xj

are the same as the sign of ∂yi
∂xj
. Hence if

∂yi
∂xj

> 0 , πi increases along both Ri (xj) and ri (xj) as xj increases, and if
∂yi
∂xj

< 0, πi decreases

along both Ri (xj) and ri (xj) as xj increases.

Lemma 1 holds regardless of whether firms are similar or dissimilar. It depends only on the

sign of ∂yi
∂xj

remaining the same for all points on the relevant reaction curves. Lemma 1 implies

that each player has a dominant strategy in the meta-game.

Proposition 3 . For similar players, leading input is a dominant strategy in the meta-game for

player i if ∂yi
∂xj

> 0. Leading output is dominant for player i if ∂yi
∂xj

< 0. For dissimilar players,

the opposite relations hold: leading input is dominant if ∂yi
∂xj

< 0 and leading output is dominant if
∂yi
∂xj

> 0.

Suppose player 2 leads input. If player 1 switches from leading input to leading output, the

outcome of the game moves along R1 from xx to yx. If player 2 sets output and player 1 switches

from leading input to leading output, the outcome moves along r1 from xy to yy. Proposition 3

implies that πyx1 −πxx1 and πyy1 −πxy1 have the same sign, and therefore that player 1 has a dominant

strategy in the meta-game. The same argument applies to player 2, and thus the meta-game has

a unique equilibrium, as described in Proposition 4.

Proposition 4 . When players are similar, the unique subgame-perfect Nash equilibrium of the

meta-game involves both players leading input if ∂yi
∂xj

> 0 and both players leading output if

13



∂yi
∂xj

< 0. If players are dissimilar, then the unique equilibrium of the meta-game involves the

player for whom ∂yi
∂xj

> 0 leading output and the player for whom ∂yi
∂xj

< 0 leading input.

Proposition 4 is the main result of this paper. Holding fixed the leading variable of player j (but

not its specific level), by changing which variable he leads, player i can force player j to increase

or decrease his input usage in the second stage. Since changing leading variables has no direct

effect on player i’s behavior (Proposition 1) but potentially beneficial strategic effects on player j’s

behavior (Proposition 2), player i will exploit this ability in his choice of leading variable. Since

player i’s preferences over leading variables do not depend on his opponent’s leading variable, he has

a dominant strategy in the meta-game (Proposition 3), and hence (since the same reasoning implies

that player j also has a dominant meta-game strategy) the unique equilibrium of the meta-game

involves each player playing his dominant strategy (Proposition 4).

The intuition underlying the meta-game equilibrium is slightly different depending on whether

the players are similar or not and on the signs of ∂y1
∂x2

and ∂y2
∂x1
. Consider similar players. When

∂yi
∂xj

> 0 the meta-game involves a free-rider problem. Each player is tempted to choose a small

input value, relying on the positive external effects of the other player’s input to increase his output.

Leading output exacerbates the problem: by doing so the player announces his intention to respond

to any increase in xj by decreasing xi in order to keep output yi constant. And, since this reaction

harms player j, player j is consequently less willing to increase his input. The result is that both

players choose relatively small inputs. On the other hand, leading input mitigates the free-rider

problem. By leading input, player i commits to expend a certain amount regardless of player j’s

input choice, and so player j no longer fears that an increase xj will be counteracted by a decrease

in xi. Consequently, player j is willing to choose a higher input, both players will choose relatively

large inputs in equilibrium, and the magnitude of the free-rider problem is reduced.

Games with similar players and ∂yi
∂xj

< 0 are particularly important. We call such games games

of strictly opposed outputs, since the effects of a change in input on a player’s own output and

on his rival’s output have opposite signs. The three examples of Section 2 all fall into this category,

as does any game with the flavor of a contest where the players compete for a prize but each bears

his own cost of the effort needed to win it (e.g., a negotiation). When the players lead inputs

in such a game, any increase in input by player i harms player j, and therefore gives player j an

incentive to increase xj in order to compensate. The result is that each player has an incentive to
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choose xi large in order to prevent his opponent from gaining an advantage, leading to an “input

war.” In this case, leading output can help to alleviate the problem. By leading output, player

i announces to player j that he will meet any increase in xj with the increase xi necessary to

maintain yi. Since this compensation is harmful to player j, player j will consequently be less

willing to increase his own input. And, relieved of the fear the player j is going to choose a large

input, player i is willing to also choose a smaller input as well. Thus leading output is dominant

in games of strictly opposed outputs.

When players are dissimilar, the intuition behind Proposition 4 remains the same, although in

this case players are pushed toward the asymmetric outcomes of the meta-game. Recall that with

dissimilar players leading input encourages the other player to use more inputs than leading output,

and suppose, for example, that ∂y1
∂x2

> 0 and ∂y2
∂x1

< 0. In this case, player 1 would like player 2

to choose x2 large. Since r2 > R2, adopting output as leading encourages this. On the other

hand, player 2 would like player 1 to choose x1 small, and leading input encourages this. Thus,

the equilibrium of the meta-game would be at point (yx) in Figure 2, Panel B.

Our basic analysis considers players whose preferences are given by yi−xi because the additive

representation of preferences is the most natural one in many of the applications we consider.

However, the techniques employed to prove the results in this section extend in a straightforward

way to more general preferences. In particular, the results continue to hold whenever each player’s

preferences over output and input are quasiconcave. In Appendix B we briefly sketch how such

a generalization can be incorporated into our analysis and show that, in this extended framework,

our analysis subsumes the results of Jéhiel and Walliser (1995).

4 Comparing the outcomes of the meta-game

Based on the results of the previous section, no conclusions can be drawn about how the usage of

inputs and production of outputs compares across the four subgames because we have as yet done

nothing to restrict the shape of the players’ reaction curves. In this section, we show that if inputs

are strategic complements and players are similar, much can be said about how the outcomes of the

meta-game compare. However, if players are dissimilar or inputs are not strategic complements,

less can be said without imposing additional restrictions on the input-output relationship.

To begin, focus on similar players. Differentiating equation (2) with respect to xj , the slope of
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Ri (xj) is given by:

dRi (xj)

dxj
= −

∂2yi
∂xi∂xj

∂2yi
∂x2i

. (3)

The denominator of the right hand side of (3) is negative by concavity. Hence the slope of the

reaction function has the same sign as the cross-partial derivative, ∂2yi
∂xi∂xj

. If inputs are strategic

complements
³

∂2yi
∂xi∂xj

> 0
´
for all admissible (xi, xj), then Ri (xj) is increasing in xj . If inputs are

strategic substitutes
³

∂2yi
∂xi∂xj

< 0
´
for all admissible (xi, xj), then Ri (xj) is decreasing.

When inputs are strategic complements, we can make the following comparison.

Proposition 5 . If players are similar and ∂2yi
∂xi∂xj

> 0, then the symmetric outcomes of the meta-

game compare as follows:

i) If ∂yi
∂xj

> 0, then input leading both players results in higher inputs, outputs, and profits

than output leading by both players. The outcome when both players lead input Pareto dominates

the other outcomes of the meta-game.

ii) If ∂yi
∂xj

< 0, then input leading by both players results in higher inputs than output

leading by both players. When both players lead output, player i earns a higher payoff than when

either both players lead input or player i leads input and player j leads output, but may earn a

lower profit than when player i leads output and player j leads input.

Since input-leading is the equilibrium of the meta-game when ∂yi
∂xj

> 0, the equilibrium of the

meta-game Pareto dominates its other outcomes. When ∂yi
∂xj

< 0, the equilibrium of the meta-game

Pareto dominates the other symmetric outcome of the game, but may not dominate the asymmetric

outcomes.

As is usually the case, strategic complementarity adds a great deal of structure to the model,

allowing definite statements to be made. Less can be said about the case where inputs are strategic

substitutes. To see why, consider Figure 3, which illustrates a possible configuration of the outcomes

of the meta-game. As drawn, yy involves a larger value of x1 than xx. Because this possibility

cannot be ruled out, no analogue of Proposition 5 exists when inputs are strategic substitutes. It

can, however, be said that at least one player employs less input at yy than at xx, and that if the

players are symmetric, i.e., y1 (a, b) = y2 (b, a), both do.

If the sign of ∂2xi
∂yj∂yi

is known, it may be possible to further describe the meta-game equilibrium.

In particular, there would be a “dual” result for Proposition 5. However, there is no necessary
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Figure 3: Equilibria when inputs are strategic substitutes.

relationship between ∂2xi
∂yj∂yi

and ∂2yi
∂xi∂xj

. In particular, the relationship depends on the first and

second derivatives of yi (xi, xj) with respect to xj , the signs of which are not determined in the

model. An analogue to Proposition 5 does exist when players are dissimilar and inputs are strategic

substitutes. However, the comparisons are between the asymmetric outcomes, xy and yx.

5 Extensions

In this section we provide three extensions to the basic analysis. First, we consider a sequential-

move game where, instead of merely announcing whether he will be a budget-setter or target-setter,

the first-mover begins the game by announcing a particular budget or target. Second, we consider

the case where commitment to a target is costly and partial commitments are possible. Finally,

we examine a simple stochastic version of the model to illustrate the additional considerations that

may arise in such a setting. In each case, while the analysis becomes more complicated, the basic

strategic effect identified in the non-stochastic case continues to be important.

A sequential-move game

In the preceding analysis, the player’s first-stage choice is between being an “input-setter” or an

“output-setter”. However, real-world competitions rarely begin with a player declaring “I will be

an output-setter.” More often, as occurred with the race to the moon, a player declares a specific

output target (or input budget). In this section, we extend the analysis to games of this sort.
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We consider a “Stackelberg” version of the basic game in which player 1 moves first and player

2 moves second. As first-mover, player 1 credibly commits not only to being an input-setter or

an output-setter, but also to a particular value of his input or output. After observing player 1’s

strategy choice, player 2 moves second.

Formally, the game can be written as:

Stage 1: Player 1 chooses s1 ∈ S1 = X1∪Y1, where X1 ⊂ R+ is the set of feasible input strategies,
and Y1 ⊂ R+ is the set of feasible output strategies.
Stage 2: After observing s1, player 2 chooses x2 in order to maximize his payoff subject to the

constraint that (s1, x2) is admissible, where player 2’s payoff is given by:23

π2 =

⎧⎨⎩ y2 (x2, s1)− x2 if s1 ∈ X1, and

ỹ2 (x2, s1)− x2 if s1 ∈ Y1.

A strategy for player 2 is a function, x2 (s1), which specifies the input player 2 chooses in response

to any strategy choice by player 1.

Stage 3: Payoffs are realized as determined by strategy choices s1 and x2 (s1).

Stage 3 is a production stage in which player 1 is committed to use input s1 if s1 ∈ X1 or

produce output s1 ∈ Y1. We leave the commitment mechanism a “black box” except to note that,

as in all of our games, to the extent that the firms are unable to commit, they will be unable to

influence their opponent’s reactions and thereby gain a strategic advantage.

This game has a unique subgame perfect equilibrium (SPE), which can be found by backward

induction. Proposition 6 extends the basic analysis to this case. The intuition behind the result

is the same as in the basic model.

Proposition 6 . Suppose players are similar. If ∂y1
∂x2

> 0, then in the SPE of this game, player 1

chooses an input, s1 ∈ X1. If
∂y1
∂x2

< 0, then in the SPE of this game, player 1 chooses an output,

s1 ∈ Y1. The opposite conclusions hold if players are dissimilar.

Commitment costs and partial commitment

Until now, we have assumed that players are able to costlessly commit to being input-setters or

output-setters. Here, we relax that assumption.

23Since Proposition 1 still applies, without loss of generality we assume that player 2 chooses input x2.
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To begin considering the issue of credible commitment, it is important to note that there is no

private information in the game we consider. Inputs and outputs are observable and verifiable. In

such environments there are a number of mechanisms that can be used to augment the credibility

of a player’s commitments and to communicate them to his rival, some of which are discussed by

Schelling (1960) and Dixit and Nalebuff (1991). For example, if the players engage in many inter-

actions like the game we consider, then reputational concerns may help make their commitments

credible. Also, since inputs and outputs are verifiable, players may enter into contracts with sup-

pliers or customers that increase the punishment from deviating from their commitments. Finally,

the players may delegate their decision-making power to agents who are given incentives to adopt

the appropriate leading variable.

While such mechanisms may help the player to credibly commit, there may be costs associated

with doing so, and total commitment/credibility may not be possible. In such cases, we would

expect that the players would weigh the costs and benefits of commitment in deciding on their

strategies. In this section we provide a brief illustration of this point.

We might expect that it is more costly to commit to setting output than to setting input since

outputs such as revenue seem inherently more dependent on the environment and the other player’s

choices than input expenditures. We adopt this assumption in our model, although the analysis

would be similar if it were more costly to be an input-setter than an output-setter. We consider

the impact on the results of imposing a cost on committing to be an output setter, and we also

allow for players to make partial commitments. To illustrate the role of costly commitment, we

focus on player 1’s incentives and assume that player 2 sets input.

We model partial commitment to being an output-setter by p, the probability that player 2

assigns to player 1 behaving as an output-setter (0 ≤ p ≤ 1).24 We model the cost of committing

to behaving as an output setter by c (p), with c (0) = 0, c0 (p) > 0 and c00 (p) > 0.

The game consists of two stages. In the first stage, player 1 chooses p, and this choice is

observed by player 2. In the second stage, the players simultaneously choose their strategies.

We begin by studying the second-stage equilibrium, conditional on a particular choice of p.

Since player 2 sets input, player 1’s reaction curve is fixed and defined implicitly by (2). Player 2, on

24This approach is similar to the conjectural variations approach to oligopoly games. See Vives (1999) for a

discussion of the conjectural variations approach in the Cournot vs. Bertrand literature, and Miller and Pazgal

(2001) for an examination of strategic effects in duopoly games when a wider range of behaviors is permitted.
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the other hand, chooses his input in order to maximize (1− p) [y2 (x1, x2)− x2]+p [ỹ2 (y1, x2)− x2],

subject to admissibility. Omitting the derivatives’ arguments for clarity, the first-order condition

for an interior solution to this problem is (1− p) ∂y2∂x2
+ p ∂ỹ2∂x2

= 1, or, making use of the fact that
∂ỹ2
∂x2

= ∂y2
∂x2
−
³
∂y2
∂x1

∂y1
∂x2

´
/ ∂y1∂x1

by Observation 3 in Appendix A (see equation (A3)):

∂y2
∂x2
− p

∂y2
∂x1

∂y1
∂x2

∂y1
∂x1

= 1.

Note that when p = 0, player 2 believes player 1 leads input and when p = 1, player 2 believes

player 1 leads output. As p increases from 0 to 1, player 2’s reaction shifts inward from R2 (x1) to

r2 (x1), and the second-stage equilibrium moves along player 1’s reaction curve, R1. This inward

movement increases player 1’s profit if ∂y1
∂x2

< 0 and decreases it if ∂y1
∂x2

> 0.

Thus, in the case of costly/partial commitment, the direction of player 1’s incentives remains

the same. If increasing x2 increases his profit, player 1 wants x2 to be large, and so prefers to lead

input. If increasing x2 decreases his profit, player 1 wants x2 to be small and so prefers to lead

output. What changes is that in this case there is a cost associated with adopting an output-setting

posture. Thus, as player 1 considers whether to undertake actions that increase his commitment

to output-setting behavior, he must ask himself whether the benefit from doing so outweighs the

cost. Let x1 (p) and x2 (p) denote the second-stage equilibrium inputs as a function of p. Player

1 chooses p ∈ [0, 1] to maximize y1 (x1 (p) , x2 (p))− x1 (p)− c (p), which (omitting the derivatives’

arguments for clarity) yields first-order condition for an interior solution p∗:

∂y1
∂x1

dx1
dp

+
∂y1
∂x2

dx2
dp
− dx1

dp
= c0 (p∗) .

When ∂y1
∂x2

> 0, player 1 prefers to set input even when commitment is costless, and so he still

prefers to set input with the commitment cost, and chooses p = 0. When ∂y1
∂x2

< 0, player 1

would choose p = 1 if commitment were costless. When commitment is costly, he sets p so that

the marginal benefit from increasing his commitment to output-setting equals the marginal cost of

doing so.

Uncertainty

In our basic model, the relationship between inputs and outputs is deterministic. However, many

real-world conflicts have an inherently stochastic nature. In this section we provide a simple

stochastic version of our model that illustrates the impact of uncertainty on the results.
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The presence of uncertainty gives rise to several new effects that capture how the players adjust

their strategies in the face of uncertainty, and this adjustment can either mitigate or reinforce

the non-stochastic strategic effect. Although they affect the nature of the strategic interaction

between the parties, these effects are not essentially strategic in nature; they would be present

even in a monopolistic model in which the firm’s marginal product (or cost) function has a random

component.

Three key insights emerge from the analysis of the stochastic model. First, the basic strategic

effect we identified in the non-stochastic model (which we will refer to as the non-stochastic strategic

effect, or NSE) remains in stochastic environments. However, the players’ overall incentives are

determined by this non-stochastic strategic effect as well as the players’ desire to adjust their

strategies in light of the uncertainty. Second, because the NSE remains, the basic results on the

dominance of input-setting or output-setting are robust to the introduction of a moderate amount

of uncertainty. Third, if the effects of the uncertainty are sufficiently large, this could upset the

results on whether input-setting or output-setting is preferred. Nevertheless, even in such cases

the non-stochastic strategic effect remains, and it must be weighed against the uncertainty effects

in determining the players’ optimal strategies.

Our analysis of the non-stochastic model made use of the fact that setting any two of the

four strategic variables uniquely determines the other two. This permitted us to project the

players’ reaction curves from the output-output and mixed games into the input-input space, which

greatly facilitated the analysis. In the presence of uncertainty, this is no longer possible. To see

why, suppose that both players set outputs. Holding fixed outputs, uncertainty about the firms’

production functions implies the inputs needed to sustain those outputs become stochastic. Thus

specifying pairs of outputs implies (non-degenerate) distributions over inputs. Because of this, the

general arguments made in the non-stochastic case are no longer possible.

We begin by considering a particularly simple stochastic setting and focus on the incentives faced

by one player, in this case player 1. Player 2 is assumed to lead input. The game begins with

player 1 choosing and announcing his leading variable. Following this announcement, the players

choose their strategies. Next, a stochastic shock to player 1’s output takes place. Finally, the two

players’ inputs and outputs are determined. To keep things as simple as possible while illustrating

the effects of uncertainty, we assume that player 2’s production function is non-stochastic and that

the players are symmetric.
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Player 1’s stochastic output function, which we denote Y1 (x1, x2, z̃), takes the form Y1 (x1, x2, z) =

y1 (x1, x2) + z, where y1 (x1, x2) is the output production function we considered earlier and z is

the realization of a zero-mean random variable, z̃. When player 1 leads output in this game, he

commits to a total output Y1. As a result, the production needed in order to achieve this target

is stochastic: Y1 − z̃ units must be produced in order to meet the target. Thus, one possible

interpretation of the game is that this is the last period of a multi-period production game, and

the realization of z̃ captures how well player 1 has done in the game until now (which is unknown

at the time he must set his production plan). If z̃ < 0, times have been bad and if player 1 has

committed to an output strategy he must make up this deficit in the final period. Conversely, if

z̃ > 0, times have been good, and player 1 can meet his output target without producing as much

in the final period as he had planned.

Before considering the strategic effects of adopting an input-setting or output-setting posture,

we first show that there is a direct advantage to leading input in this game.25

Proposition 7 . Holding fixed player 2’s input choice in the game described above, player 1’s

maximal profit is larger when he sets input than when he sets output.

When player 1 sets input, his output is stochastic. However, given the additive nature of the

uncertainty this has no effect on the player’s expected profit. On the other hand, when player 1

leads output his total output is fixed, but the output he needs to produce (and hence how much cost

he must incur) is stochastic. Due to the convexity of the player’s cost function, the expected cost

of producing Y1 − z̃ units is larger than the cost of producing the expected output, Y1. Because

of this, maintaining an output target in the presence of uncertainty is more costly to the firm than

maintaining the input target that implies the same expected output.26 We call this effect, which

biases player 1 toward an input-setting posture, the Own Uncertainty Effect (OUE).
25Klemperer and Meyer (1986) prove a similar result in the context of the Cournot vs. Bertrand debate. In their

case, they show that whether uncertainty biases a player toward price- or quantity-setting depends on the nature

of the uncertainty. Although the specification we work with is a natural one, there are other models in which

uncertainty would bias the player toward output-setting.
26While we have argued that input-setting is preferred to output setting holding fixed the other firm’s strategy, we

cannot say whether uncertainty tends to increase or decrease the firm’s output target. The reason is that this depends

on comparing ∂x̃1
∂y1

and Ez̃
∂x̃1
∂y1
, which in turn depends on the whether ∂x̃1

∂y1
is concave or convex in y1. Reasonable

general restrictions on the players’ production functions do not determine the concavity of convexity of ∂x̃1
∂y1
, but it is

easily determined in particular cases which (if either) of these is satisfied.
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While the OUE biases player 1 toward choosing to set input holding fixed player 2’s strategy,

choosing to lead input or output also influences player 2’s strategy choice. To gain an understanding

of how the introduction of uncertainty affects the overall strategic effect of choosing to lead input

or output, consider player 2’s optimal reaction to an input-leading or output-leading opponent. If

player 1 sets input, then player 2 chooses x2 to maximize y2 (x1, x2)− x2 subject to (x1, x2) being

admissible, which for an interior solution yields first-order condition ∂y2 (x1, x
∗
2) /∂x2 = 1. Note

that this is the same first-order condition as in the non-stochastic case.

If player 1 sets output Y1, then player 2 sets x2 in order to maximize Ez̃ (ỹ2 (Y1 − z, x2)− x2)

subject to (Y1 − z̃, x2) being admissible for all realizations of z̃, which for an interior solution has

optimality condition:

Ez̃
∂ỹ2 (Y1 − z, x∗2)

∂x2
= 1.

Here, player 2 equates his expected marginal product, which depends on player 1’s stochastic

production Y1 − z̃, with his marginal cost.

Whether player 2 chooses a larger input in response to input-setting or output-setting (i.e., the

direction of the strategic effect) depends on the relative size of
∂y2(x1,x∗2)

∂x2
and Ez̃

∂ỹ2(Y1−z,x∗2)
∂x2

, where

Y1 = y1 (x1, x
∗
2) is the expected output when inputs are x1 and x∗2. To facilitate this comparison,

we decompose their difference, which we call the total strategic effect (TSE), into the non-stochastic

strategic effect (NSE) and the rival’s reaction to his uncertainty about the player’s strategy, which

we call the stochastic strategic effect (SSE):

TSEz }| {
∂y2 (x

∗
1, x

∗
2)

∂x2
−Ez̃

∂ỹ2 (Y1 − z, x2)

∂x2

=

NSEz }| {∙
∂y2 (x

∗
1, x

∗
2)

∂x2
− ∂ỹ2 (Y1, x

∗
2)

∂x2

¸
+

SSEz }| {∙
∂ỹ2 (Y1, x

∗
2)

∂x2
−Ez̃

∂ỹ2 (Y1 − z, x∗2)
∂x2

¸
.

If the TSE is positive, then player 2 chooses a larger input in response to an input-setting opponent

than in response to an output-setting opponent (i.e., the direction of the strategic effect is the same

as in the non-stochastic setting). If TSE is negative, the opposite is true.

The first component of the TSE, the NSE, is the effect identified in the non-stochastic model.

Hence, as in our earlier analysis, NSE is positive and leads player 2 to choose a smaller input when

facing an output-leading opponent than when facing an input-leading opponent. Thus, the basic

strategic effect of the non-stochastic model persists.
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Uncertainty introduces an additional strategic effect that is due not to the rival player’s choice

of strategic variable, but to the player’s uncertainty about which particular strategy the rival player

has chosen. The SSE captures the fact that when player 1’s production is random, player 2 faces

uncertainty about the marginal product of his input expenditure, and this uncertainty affects his

optimal strategy. In response, player 2 will adjust his input usage in order to set its expected

marginal product equal to its marginal cost. Whether this adjustment leads player 2 to increase

or decrease his input usage depends on whether ∂ỹ2
∂x2

is concave or convex in y1. Although natural

assumptions on the production function do not determine the sign of the SSE, it is easily computed

for a particular input-output relationship.

If uncertainty tends to increase x2 (i.e., the SSE is positive), then this effect reinforces the NSE,

and player 2’s overall reaction is larger against an input-leading opponent than against an output-

leading opponent (i.e., TSE is positive). If the SSE is negative, then this effect works against

the NSE. If the SSE is negative and sufficiently strong, it may even reverse the overall impact of

adopting an output-setting strategy; the TSE may be negative and player 2’s reaction against an

output-setting opponent may be larger than his reaction against an input setting opponent. Of

course, for this to happen ∂ỹ2
∂x2

must be convex in y1 and uncertainty must be sufficiently important.

When uncertainty is small to moderate, this effect is unlikely to swamp the strategic effect.

The overall decision of whether to lead input or output must consider both the direct and

strategic effects. When the TSE is positive, then the strategic effect favors input setting if ∂y1
∂x2

> 0

and output setting if ∂y1
∂x2

< 0. Conversely, when the TSE is negative, then the strategic effect

favors output setting if ∂y1
∂x2

> 0 and input setting if ∂y1
∂x2

< 0. However, the direct effect (OUE)

always favors input-setting.

Table 2 summarizes player 1’s preferred leading variable when facing an input-leading opponent.

TSE Positive TSE Positive TSE Negative TSE Negative
∂y1
∂x2

> 0 ∂y1
∂x2

< 0 ∂y1
∂x2

> 0 ∂y1
∂x2

< 0

Weak OUE Input Output Output Input

Strong OUE Input Input Input Input

Table 2: Player1’s optimal choice of leading variable when player 2 leads input.
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When the impact of uncertainty is relatively mild, the operative case is where the OUE is weak

and the TSE is positive, which establishes the following corollary.

Corollary 1 . Provided the impact of uncertainty is not too large, against an input-leading oppo-

nent it is a dominant strategy in this game for player 1 to set input if ∂y1
∂x2

> 0 and set output if
∂y1
∂x2

< 0.

Corollary 1 establishes that the basic results of the non-stochastic analysis are robust to the

introduction of a moderate amount of uncertainty. When both players’ outputs experience sto-

chastic shocks (i.e., realized output can be written as Yi (xi, xj , zi) = yi (xi, xj) + zi, where zi is

the realization of a firm-specific shock), the analysis becomes even more complicated. While there

is still a direct advantage to setting input when the rival player is an input-setter, when the rival

player is an output-setter the direction of the direct effect cannot be signed. In particular, the

nature of these effects may depend on the distributions of the shocks and their correlation, among

other things. Nevertheless, because the non-stochastic strategic effect persists and the effects of

uncertainty are small for mild uncertainty, the basic results on the optimality of input-setting or

output-setting continue to hold, provided the uncertainty is not too large.27

A stochastic contest

Although it is difficult to make general statements regarding the players’ decisions whether to

lead input or output in general stochastic environments, much can be said in particular environ-

ments. To investigate the players’ simultaneous incentives when both players’ outputs are subject

to stochastic shocks, we now turn our attention to a stochastic version of the contest discussed in

Example 1. Let z̃1 denote a zero-mean random shock to player i’s winning probability with typical

realization z1. Let z̃2 = −z̃1. The players’ output functions are:

yi (xi, xj , zi) = A

µ
xi

xi + xj + δ
+ zi

¶
.

The stochastic shocks to the players’ winning probabilities are perfectly negatively correlated.

Thus, if player 1 has been lucky, player 2 has necessarily been unlucky (and vice versa).

27 In this section, we have considered one particular specification of uncertainty. However, there could be others.

Depending on the nature of the shock (i.e., additive, multiplicative, etc.) the direction of the effects identified in this

section may change. Nevertheless, the conclusion that the results on the dominance of input- or output-setting when

uncertainty is mild will remain valid.
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Again, this game can be thought of as the last stage of a multi-period competition. The

realization of the shock (z̃i) captures the state of the game at the start of the final period, which

depends on factors that are unknown to the players at the time they must choose their strategies

and is, therefore, stochastic. Alternatively, we can interpret the game as the players’ input choices

representing flows of expenditure that take place over time, during which random events may either

increase or decrease the likelihood of winning the contest. In this interpretation, we do not allow

for the players to vary their input flows over time.

To begin, we define the following stochastic equivalents to functions xi (yi, yj), ỹi (xi, yj), and

x̃i (yi, xj):

xi (yi, yj , zi) =
(yi −Azi) δ

A− y1 − y2

ỹi (xi, yj , zi) =
(A+ yj)xi +Aziδ

xi + δ

x̃i (yi, xj , zi) =
yi (xj + δ)−Azi (xj + δ)

A+Azi − yi

Note that yi (xi, xj , zi), xi (yi, yj , zi), and ỹi (xi, yj , zi) are linear in zi. Therefore, Ez̃iyi (xi, xj , zi),

Ez̃i ỹi (xi, yj , zi) and Ez̃ixi (yi, yj , zi) are independent of the distribution of z̃i. Similarly, Ez̃i
∂yi
∂xi
,

Ez̃i
∂xi
∂yi
, and Ez̃i

∂ỹi
∂xi

are also independent of the distribution of z̃i. The remaining function,

x̃i (yi, xj , zi), is convex in zi, as is its derivative ∂x̃i
∂yi
.

These observations imply the following proposition.

Proposition 8 . In the stochastic contest, if player j leads input xj , player i strictly prefers to lead

input. If player j leads output yj , player i is indifferent between leading input and leading output.

Proposition 8 establishes that Proposition 1 no longer holds in the stochastic setting; players

are not indifferent between input leading and output leading. Interestingly, the perfect negative

correlation between the two players’ shocks is responsible for the lack of a direct advantage to one

or the other strategy when setting output. Written as a function of both shocks, xi (yi, yj , z1, z2) =

(yi −Azi) δ/ (A− y1 − z1 − y2 − z2). Since z1 = −z2, the denominator is non-stochastic, leaving
the resulting expression linear in the uncertainty.

Proposition 9 characterizes how the strategic effects change when uncertainty is incorporated

into the model.
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Proposition 9 . In the stochastic contest, if player i chooses:

(a) input against an input-leading opponent, uncertainty does not affect i’s best response to xj .

(b) input against an output-leading opponent, uncertainty does not affect i’s best response to yj .

(c) output against an input-leading opponent, uncertainty reduces i’s best response to any xj .

(d) output against an output-leading opponent, uncertainty does not affect i’s best response to yj .

Proposition 9 implies that the nature of the total strategic effect does not change when a player

leads input. An input-leader chooses a larger input when facing an input-leading rival than when

facing an output-leading rival. Part (c) of the proposition suggests that the analysis is more

complicated if the player leads output. The effect identified in part (c) tends to mitigate the

strategic effect. It reduces the extent to which an output leader chooses a smaller output when

facing another output leader than when facing an input leader. If this effect is sufficiently large, it

could reverse the overall direction of the strategic effect, and thus an output leader might be more

aggressive when facing an output leader than when facing an input leader. However, once again

this is only possible if there is a relatively high degree of uncertainty.

Corollary 2 . Provided the effects of uncertainty are not too large, in the stochastic contest game

each player has a dominant strategy to lead output.

When the effects of uncertainty are large enough, it may be that output-setting is no longer a

dominant strategy in the meta-game. In the stochastic contest uncertainty increases the relative

attractiveness of leading input because of (i) the direct advantage identified in Proposition 8, and (ii)

part (c) of Proposition 9, according to which increased uncertainty decreases the strategic advantage

to output-leading when facing an output-leading opponent. To illustrate, in a non-stochastic R&D

contest it is optimal for the firms to lead output. However, with enough uncertainty about the

feasibility of the innovation, specifying an output target (e.g., innovation date or probability of

being first to market) forces the firm to bear all of the risk of the difficulty of the innovation on

the input-side; it commits to spend whatever is necessary to innovate by the target date. If the

cost of this risk is sufficiently high, the firm will forego the strategic benefits of committing to an

output strategy in order to avoid the risky cost of meeting the output target.
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6 Applications

We now turn to illustrating how this analysis can inform our understanding of real-world strategic

situations. We begin by returning to the example that started the paper, the decision to go to the

moon. We then provide a number of other examples where the choice of leading variables plays

an important role. We do not pretend to entirely explain these interactions. Rather, our goal is

to illustrate that the strategic effects we identify are real, common, and potentially important.

The space race revisited

Consider once again the hypothetical question of whether President Kennedy was right to adopt an

output strategy, or whether an input strategy might have been better. According to our theory,

the key to answering this question is whether increasing spending on the U.S. space program would

have increased or decreased the likely success of the Soviet program.

There is significant evidence that the benefit derived from winning the space race consisted

primarily of the prestige associated with being the first nation to the moon. According to the

report of Kennedy’s advisory committee on the exploration of space, “during the next few years,

the prestige of the United States will in part be determined by the leadership we demonstrate in

space activities.”28 The scientific benefits associated with being first to the moon, as opposed to

being second to the moon or achieving advances in earth-orbit programs, were considered minimal,

and focusing on the moon race may have even taken resources away from military rocket programs.29

Hence the game between the U.S. and U.S.S.R. was one of strictly opposed outputs. Seen in this

light, announcing an output target was, indeed, prudent. By declaring to the Soviets and the

world that the U.S. would be the first to the moon, no matter what the cost, Kennedy signaled to

the Soviets that increasing spending in an effort to prevent the U.S. from getting to the moon first

would ultimately be fruitless.

As a final note on the space race, the strategic effects we have identified are only relevant if the

first mover’s announcement is seen by the other player as a credible commitment, and establishing

credibility in an environment as filled with technological and political uncertainty as this one is

28Quoted in Beschloss, (1997), p. 54.
29Testifying before Congress in 1958, NASA deputy administrator Hugh Dryden described the Defense Depart-

ment’s manned spaceflight proposal as having “about the same technical value as the circus stunt of shooting the

young lady from the gun.” (quoted in Beschloss, 1997, p. 36).
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an incredibly challenging task. Still, Kennedy’s rhetorical power may have served him well here.

Indeed, Kennedy’s commitment was strong enough that putting a man on the moon by the end of

the decade persisted as a national goal even after his death. If this goal had been announced by

a president less able to rally the country behind him, the declaration may have been dismissed as

mere cheap talk.

Research and development

Consider two firms that simultaneously undertake research and development programs aimed at

bringing similar products to market. In such games, there are a number of possible effects of the

intensity of the rival firm’s program. Since the firms are working on related products, there may

be positive innovative spillovers, in which case ∂yi
∂xj

> 0. Each firm has an incentive to free-ride off

the efforts of the other. In this case, Proposition 4 shows that the dominant meta-game strategy

is to set input, since by doing so the firm can signal to its rival that it will not reduce its input in

response to the rival’s expenditures. On the other hand, since both firms are developing similar

products, they may be competing for scarce resources such as raw materials, scientific talent, or

marketing channels. In this case, an increase in intensity by the other firm is harmful, ∂yi
∂xj

< 0,

and Proposition 4 implies that the optimal meta-game strategy is to set output. Finally, if the

products are patentable, being the first to market might present the ultimate reward, in which case

the game is of opposing interests, and once again the optimal strategy is to set output.

Negotiations

Consider two parties who meet to negotiate the division of an asset such as land, the gains from

a trade relationship, or the terms of a cease-fire. Here, the input is the time and effort the party

puts into the negotiation, and the output is the share of the asset that the player wins. Clearly,

this is a game of strictly opposed outputs, and thus, leading output is a dominant strategy.

The strategic difference between leading input and output in this type of situation plays a

prominent role in one of the classic motivational stories in negotiation strategy. In his book You

Can Negotiate Anything (Cohen 1980), Herb Cohen tells of when he was sent to Japan on his first

major negotiation. When Cohen arrived in Japan, his hosts asked him when his return flight was,

ostensibly in order to reserve the company’s limousine for him. Cohen told them his itinerary, at

which point his hosts began to wine and dine him, refusing to begin serious negotiations until just
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before Cohen’s deadline. The deal was finalized on the way to the airport, and Cohen, desperate

not to return home empty-handed, was forced to make many unnecessary concessions.

What went wrong for Cohen? By telling his opponents his deadline, he implicitly adopted

an input-leading strategy. Knowing this, his opponents only had to be more patient (i.e., use

more inputs) than Cohen to gain the advantage. The analysis in this paper suggests that Cohen’s

response to the question about his return flight should have been to say that he was prepared to

stay as long as necessary to achieve his goals, eliminating the other side’s ability to exploit his

deadline. In other words, he should have adopted an output strategy.

Corporate strategy

Suppose two auto manufacturers are making decisions about capacity and sales for the next decade.

All else equal, the larger the total capacity in the industry, the lower are prices. Hence profit from

sales is decreasing in the other firm’s capacity (i.e., ∂yi
∂xj

< 0). In this case, it is optimal for the

players to adopt an output-leading posture. By specifying sales targets and committing to build or

destroy capacity to meet them, each firm signals to its rival that it will not be drawn into building

more capacity in order to increase unit sales while driving prices down to the point where both

firms are worse off. Interestingly, in this context output-setting may be a provide a mechanism for

tacit collusion.

On the other hand, consider firms that produce complementary products, such as computer

hardware and software. For hardware, let the input variable be capacity. For software, let the

input variable be dollars spent on developing new programs. In either case, the output is profit

before spending on capacity or development. In this case ∂yi
∂xj

> 0 : greater availability of hardware

makes software more profitable and vice versa. The theory implies that players should lead inputs.

By committing to provide a certain number of computers to the market, software manufacturers are

convinced that the hardware manufacturer will not try to restrict the number of machines available,

using the value created by the software to inflate hardware prices. Similarly, by committing to

spend a certain amount on software development, the software company commits to a strategy of

developing more and better products rather than selling the same old product and relying on the

large number of computers to generate sales volume.
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Advertising

In the practice of marketing, the choice between leading variables plays an important role, and both

types of leading variables are observed. While some firms set advertising budgets at the start of

the year, other companies, such as Anheuser-Busch and Unilever, avoid a commitment to a budget

in favor of a detailed specification of measurable output goals such as reach, frequency, production

costs and even desired sales for the campaign.30

The results presented here state that if advertising by one firm increases the sales of the other

firm, the firms should lead with inputs because by doing so they are able to commit not to free ride

off their rival’s spending. On the other hand, if increasing advertising decreases the sales of the

other firm, then the firms should choose output strategies since by doing so they commit to not

enter into an advertising war.

Advertising raises the interesting possibility of dissimilar players. For example, it might be

that advertising by a popular hotel chain promoting a specific location increases the demand for all

hotels in the area, while advertising by one of the local hotels in the area primarily steals business

away from the chain. In this case, the theory suggests that the chain should lead input and the

local hotel should lead output. By leading output, the local hotel signals to the chain that it will

not attempt to steal too much of the chain’s business, and by leading input, the chain signals that

it will not free ride off of the local hotel’s generosity.

7 Conclusion

We have considered competitive environments from a slightly unusual perspective. Rather than

taking the game as fixed and studying the equilibrium, we have instead focused on how, through

the choice of a leading variable, a player can affect the game that is being played, and consequently

influence the ultimate equilibrium outcome. In the course of our analysis, we have identified several

general principles. First, the importance of a player’s choice of leading variable is not that it affects

the possibilities open to him, but rather that it influences the other player’s behavior. Second, as

long as the sign of ∂yi
∂xj

does not depend on the input vector at which it is evaluated, either leading

input or leading output is a dominant strategy in the meta-game. Third, as a consequence of these

30For a complete discussion of advertising budgets see Kotler (2000). Miller and Pazgal (2005) considers the

question of input setting vs. output setting in a marketing/advertising context.
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dominant strategies, the meta-game exhibits a unique equilibrium.

Our goal has been to produce a theory that can be helpful in understanding real-world strategic

interactions, and the extensions to the basic theory and applications are meant to give a flavor of

how this might work. In some of the applications, such as the space race and Herbert Cohen’s

negotiation story, we have attempted to apply the model to highly complex, unstructured interac-

tions. While there is certainly more to these situations than a simple choice between input and

output strategies, we believe that considering the strategic situation in terms of this choice helps to

explain why things happened the way they did, as well as how the players may have improved their

outcomes by acting differently. In short, while we admit that we have not told the whole story, we

believe that, in a wide variety of circumstances, the issues explored in this paper may account for

an important part of the story.
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Appendix A

Properties of the input-output relationship

The following three observations are used in the proofs.

Observation 1: Differentiating yi (x̃i (yi, xj) , xj) ≡ yi with respect to yi yields
∂yi
∂xi

∂x̃i
∂yi

= 1, or

∂x̃i
∂yi

=
1
∂yi
∂xi

. (A1)

Differentiating a second time with respect to yi verifies that x̃i is convex in yi.

Observation 2: Differentiating y1 (x1 (y1, y2) , x2 (y2, y1)) ≡ y1, and y2 (x2 (y2, y1) , x1 (y1, y2)) ≡ y2

with respect to y1 and y2 yields four equations in four unknowns, allowing us to solve for the partial

derivatives of inputs with respect to outputs (i.e., ∂x1∂y1
, ∂x1∂y2

, etc.) in terms the partial derivatives of

outputs with respect to inputs (i.e., ∂y1
∂x1

, ∂y2∂x2
, etc.). In particular, this implies that

1
∂xi
∂yi

=
∂yi
∂xi
−

∂yi
∂xj

∂yj
∂xi

∂yj
∂xj

. (A2)

Observation 3: Differentiating identity xi (ỹi (xi, yj) , yj) ≡ xi with respect to xi yields ∂ỹi/∂xi =

1/ (∂xi/∂yi). Combining this with equation (A2) above,

∂ỹi
∂xi

=
1
∂xi
∂yi

=
∂yi
∂xi
−

∂yi
∂xj

∂yj
∂xi

∂yj
∂xj

. (A3)

Thus when players are similar, ∂ỹi
∂xi

< ∂yi
∂xi
. The opposite inequality holds for dissimilar players.

Proofs

Proof of Proposition 1. Suppose player j leads input but player i leads output. Player i chooses

yi to maximize yi− x̃i (yi, xj) subject to admissibility of (yi, xj). Differentiating with respect to yi

and setting the result equal to zero yields (for an interior solution):

∂x̃i (y
x
i (xj) , xj)

∂yi
≡ 1, (A4)

where function yxi (xj) is player i’s optimal output-reaction to player j’s choice of xj . Combining

(A1) and (A4) implies:
∂yi (x̃i (y

x
i (xj) , xj) , xj)

∂xi
≡ 1, (A5)
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and hence x̃i (yxi (xj) , xj) ≡ Ri (xj), by uniqueness of Ri (xj). That is, holding fixed xj , yxi (xj) im-

plies the same relationship between xi and xj as Ri (xj). Similar arguments for other combinations

of strategic variables complete the proof. Q.E.D.

Proof of Proposition 2. By (A2) and (A3),

∂ỹi
∂xi

=
1
∂xi
∂yi

=
∂yi
∂xi
−

∂yi
∂xj

∂yj
∂xi

∂yj
∂xj

<
∂yi
∂xi

(A6)

when the players are similar. When the players are dissimilar, the opposite inequality holds.

Define φ (xi, xj) to be player i’s marginal utility of an increase in xi as a function of both players’

input choice: φi (xi, xj) ≡ ∂yi(xi,xj)
∂xi

− 1. Equation (2) implies that φi (xi, xj) = 0 whenever

xi = Ri (xj). Since φi (xi, xj) is just the partial derivative of yi (xi, xj)− xi with respect to xi and

yi (xi, xj) is concave in xi, for similar players φi (xi, xj) > 0 below Ri (xj) (that is, nearer to the

xi = 0 axis), and φi (xi, xj) < 0 above Ri (xj). See Figure 1, Panel A.

Fix an input vector (x̂i, x̂j) such that x̂i = ri (x̂j), and let ŷj = yj (x̂i, x̂j). By (A6), when

players are similar and
∂ỹi(xyi (ŷj),ŷj)

∂xi
= 1, ∂yi(ri(xj),xj)

∂xi
> 1. Therefore φi (xi, xj) > 0 whenever

xi = ri (xj). When players are dissimilar, the opposite inequality holds in (A6), and the opposite

argument follows. See Figure 1, Panel B. Q.E.D.

Proof of Lemma 1. To begin, note that the slope of firm i’s profit isoquant through (x1, x2) is

given by dxj/dxi = − ((∂yi/∂xi)− 1) / (∂yi/∂xj). That ∂πi (Ri (xj) , xj) /∂xj has the same sign as

∂yi/∂xj follows from the definition of the reaction function (equation (2)) and the fact that player

i’s profit isoquants are vertical along Ri (xj) and increasing xj affects player i’s output but not

his input. To see that ∂πi (ri (xj) , xj) /∂xj has the same sign, note that player i’s profit along his

reaction curve when player j leads with outputs must be monotone in the output-output space. By

the invertibility assumptions, profit must then be monotone along the projection of this reaction

curve into the input space, ri (xj). To prove that profit must increase in the same direction as it

does along Ri (xj), suppose that
∂yi
∂xj

> 0, and consider Figure 4.31

Point (a) is an arbitrary point along Ri (xj) . The profit isoquant through point (a) is vertical

by the definition of Ri (xj). Since ∂y1
∂x2

> 0, the upper level-set of the profit function lies to the

right of point (a). Consequently, the point where this profit isoquant intersects ri (xj), point (c),

must involve a strictly larger value of xj . On the other hand, moving down along the dotted line

31Figure 4 is drawn for similar players, but the same argument applies for dissimilar players.
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Figure 4: Profit is monotone along ri.

from point (a) to point (b) profit must decrease. Thus profit is lower at (b) than (c). Since the

original selection of point (a) was arbitrary, it must increase whenever xj increases along ri (xj).

Similar arguments apply when ∂yi
∂xj

< 0 or players are dissimilar. Q.E.D.

Proof of Proposition 3. By Lemma 1, if ∂y1
∂x2

> 0 then πxx1 > πyx1 and πxy1 > πyy1 , and therefore

input-setting is dominant for player 1. The remaining claims follow from Lemma 1 in a similar

manner. Q.E.D.

Proof of Proposition 4. Follows immediately from Proposition 3. Q.E.D.

Proof of Proposition 5. Figure 5 illustrates the proof.

Suppose ∂yi
∂xj

> 0. Since point yy lies on r2 and r1, and these lie nearer the origin than R2 and

R1, respectively, yy must involve smaller input usage than xx, which lies on R2 and R1. Since
∂2yi

∂xi∂xj
> 0 and both x1 and x2 are smaller at yy than xx, outputs must also be smaller at yy than

xx. Since ∂y2
∂x1

> 0, moving horizontally along the dotted arrow between yy and R2 increases player

2’s payoff, and, for the same reason, moving up along R2 also increases 2’s payoff. Hence 2’s payoff

must be larger at xx than at yy. Player 2’s payoff must be larger at xx than yx since moving right

along the dotted arrow to R2 increases payoff, and then moving up R2 to xx also increases payoff.

The same argument applies for player 1 with the roles reversed.

When ∂yi
∂xj

< 0, the argument that inputs must be larger at xx than yy still applies. Outputs

cannot be ranked. As for payoffs, moving down along R2 from xx to the point where the lower
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Figure 5: Payoff comparisons: strategic complements.

dotted arrow intersects it decreases 2’s payoff, as does moving horizontally along the dotted arrow

to yy. Thus 2 must earn higher payoffs at yy than xx. Since yx lies up r2 from yy, 2 must earn

higher payoff at yy than yx. However, if xy lies below the lower horizontal dotted arrow, as it

does in the diagram, then it may be that 2’s payoff at xy is higher than at yy. The symmetric

argument applies for player 1. Q.E.D.

Proof of Proposition 6. Suppose ∂y1
∂x2

> 0, and consider the case where player 1 chooses output

strategy y∗1. In response to this, player 2 chooses x2 in order to maximize ỹ2 (x2, y∗1) − x2. Let

x∗2 be the solution to player 2’s problem, and let x∗1 = x̃1 (y
∗
1, x

∗
2) be the implied input usage by

player 1. Now, suppose that instead of player 1 choosing y∗1, player 1 had instead chosen x∗1. By

Proposition 2, in response to x∗1, player 2 chooses x02 > x∗2. Since y1 (x∗1, x̃2) > y∗1, player 1 earns

higher payoff when choosing x∗1.32 Hence y∗1 could not have been optimal. The proof is illustrated

in Figure 6, Panel A.

The proof of the second part is similar. Suppose ∂y1
∂x2

< 0, and that player 1 chooses input

strategy x∗1. In response to this, player 2 chooses x2 in order to maximize y2 (x∗1, x2)− x2. Let x∗2
be the solution to player 2’s problem, and let y∗1 = y1 (x

∗
1, x

∗
2). Suppose that player 1 had instead

chosen y∗1. Since ∂y1
∂x2

< 0, the set of points where y1 (x1, x2) = y∗1 slopes upward. Hence Player

2’s best response to y∗1 is x
0
2 < x∗2. And, since

∂y1
∂x2

< 0, player 1 the input, x
0
1, needed to sustain y

∗
1

32The slope of an output isoquant for player 1 is − (∂y1/∂x1) / (∂y1/∂x2), whose sign is opposite that of ∂y1
∂x2
.
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Figure 6: If ∂y1
∂x2

> 0, output strategies are dominated. If ∂y1
∂x2

< 0, input strategies are dominated.

in response to x02 is smaller than x∗1. Hence player 1 earns higher payoff, and choosing x∗1 cannot

be optimal. The proof is illustrated in Figure 6, Panel B. Q.E.D.

Proof of Proposition 7, Fix player 2’s input choice at x∗2, and suppose that player 1 leads out-

put. Let Y ∗1 be the profit-maximizing output target given x∗2. Expected input usage is given

by Ez̃x̃1 (Y
∗
1 − z, x∗2). By convexity of x̃1 (y1, x2) in y1, Ez̃x̃1 (Y

∗
1 − z, x∗2) > x̃1 (Y

∗
1 , x

∗
2) . That is,

the expected cost of achieving expected output Y ∗1 under input setting is greater than the cost of

producing Y ∗1 if there were no uncertainty. Let x∗1 = x̃1 (Y
∗
1 , x

∗
2) denote this cost.

To show that input-setting dominates output-setting, suppose that player 1 leads input, and let

x̂1 maximize y1 (x1, x∗2) + z̃ − x1. Optimal profit is given by:

y1 (x̂1, x
∗
2)− x̂1 ≥ y1 (x

∗
1, x

∗
2)− x∗1 > Y ∗1 −Ez̃x̃1 (Y

∗
1 − z, x∗2) .

The first inequality follows from optimality of x̂1, while the second follows from convexity of

x̃1 (y1, x2) in y1. Finally, note that Y ∗1 − Ez̃x̃1 (Y
∗
1 − z, x∗2) is the maximal expected profit of

an output setter. Q.E.D.

Proof of Proposition 8. Let i = 1 and j = 2. Suppose player 2 sets input, and let player 1’s best

output choice be y∗1. Player 1’s expected profit is

y∗1 −Ez̃1 x̃1 (y
∗
1, x̄2, z1) .

Let x∗1 be such that y∗1 = Ez̃1y1 (x
∗
1, x2, z̃1). If player 1 sets input and chooses x

∗
1, expected profit
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is:

Ez̃1y1 (x
∗
1, x̄2, z1)− x∗1 = y1 (x

∗
1, x̄2, 0)− x∗1 = y∗1 − x̃1 (y

∗
1, x̄2, 0) < y∗1 −Ez̃1 x̃1 (y

∗
1, x̄2, z1) ,

where the first and second equalities follow from the fact that y1 (x∗1, x̄2, z1) is linear in z1 and

Ez̃1 = 0 and the definition of y∗1, and the inequality follows form concavity of x̃1 (y∗1, x̄2, z1) in z1.

For the second part, suppose player 2 sets output, and let player 1’s best output choice be y∗1.

Let x∗1 = Ez̃1 (x1 (y
∗
1, ȳ2, z1)), and note that x

∗
1 does not depend on the distribution of z̃1. Player

1’s expected profit is:

y∗1 −Ez̃1 (x1 (y
∗
1, ȳ2, z1)) = y∗1 − x1 (y

∗
1, ȳ2, 0) = ỹ1 (x

∗
1, ȳ2, 0)− x∗1 = Ez̃1 ỹ1 (x

∗
1, ȳ2, z1)− x∗1.

Thus, player 1 can achieve his maximal output-setting profit by setting input. Since the steps re-

verse, player 1 can also achieve his maximal input-setting profit by setting output, which completes

the proof. Q.E.D.

Proof of Proposition 9. Suppose that player 1 leads input, and consider his reaction to an input-

setting and output-setting opponent. If player 2 sets input, player 1 chooses x1 to maximize

Ez̃1 (y1 (x1, x2, z1)) − x1, subject to admissibility, which for an interior solution yields first-order

condition Ez̃1
∂y1(x1,x2,z1)

∂x1
= 1, or ∂y1(x1,x2,0)

∂x1
= 1. Thus, because output is linear in z1, uncertainty

does not affect player 1’s best response condition. Similar computations when player 1 sets in-

put and player 2 sets output and when player 1 sets output and player 2 sets output show that

uncertainty also does not affect player 1’s best response condition in these cases. When player 1

sets output and player 2 sets input, player 1 chooses y1 to maximize y1−Ez̃1 x̃1 (y1, x2, z1), subject

to admissibility, which for an interior solution has first-order condition Ez̃1
∂x̃(y1,x2,z1)

∂y1
= 1. Since

x̃ (y1, x2, z1) is convex in z1, Ez̃1
∂x̃(y1,x2,z1)

∂y1
> ∂x̃1(y1,x2,0)

∂y1
. Q.E.D.

Appendix B

In this Appendix, we show how the results extend to the case of general quasiconcave utility

functions.

The basic analysis considers players whose preferences over input-output pairs are given by

yi − xi. We have chosen this representation and maintain it for most of the paper because we

believe it is the most natural one in many of the applications we consider. However, our results
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can be easily extended to the case where utility is a more general function of input and output,

ui (yi, xi). Thus, in particular, it need not be the case that xi and yi are both stated in dollar

terms. In this section, we briefly sketch the argument, and point to how the basic proofs of our

original arguments remain valid.

Suppose that player i has utility function ui (yi, xi), which is increasing in yi and decreasing

in xi. If player i chooses xi in response to an input-setting opponent, he chooses xi to maximize

ui (yi (xi, xj) , xi), subject to admissibility of (xi, xj), which for an interior solution has first-order

condition:
∂ui
∂yi

∂yi
∂xi

+
∂ui
∂xi

= 0. (B1)

If ui (yi, xi) is strictly quasiconcave, strict concavity of yi (xi, xj) in xi implies (B1) is satisfied by

a unique xi for each xj , which we once again denote Ri (xj).

If, on the other hand, player 1 leads output, he chooses yi to maximize ui (yi, x̃i (yi, xj)),subject

to admissibility, which for an interior solution has first-order condition ∂ui
∂yi

+ ∂ui
∂xi

∂x̃i
∂yi

= 0. Once

again, the fact that ∂yi
∂xi

= 1/∂x̃i∂yi
implies that player i’s best response does not depend on his own

strategic variable. Hence Proposition 1 extends to this case of general preferences.

Next, we show that Proposition 2 extends as well. Consider player i’s best response to an

output-leading opponent. He chooses xi to maximize ui (ỹi (xi, yj) , xi), subject to admissibility of

(xi, yj), which for an interior solution has first-order condition:

∂ui
∂yi

∂ỹi
∂xi

+
∂ui
∂xi

= 0. (B2)

Again, strict quasiconcavity of ui (yi, xi) along with convexity of ỹi (xi, yj) in xi implies a unique

solution to (B2). As before, when players are similar, ∂ỹi
∂xi

< ∂yi
∂xi
, and hence the same argument as

was used in the proof of Proposition 2 shows that it extends to this environment as well. That

is, for given xj , the input player i chooses as a best response to xj is larger when he believes his

opponent to be an input-setter than when he believes is opponent is an output-setter (when players

are similar). Propositions 3 and 4 follow from Propositions 1 and 2.

As a final point on extension, note that the results of the paper hold if either ui (yi, xi) is

quasiconcave and yi (xi, xj) is strictly concave in xi, or if ui (yi, xi) is strictly quasiconcave and

yi (xi, xj) is concave. Hence we can also reproduce the Jéhiel and Walliser (1995) results, which

consider strictly quasiconcave utility functions when the four control variables are related linearly.
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