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This paper examines deterministic partnerships where a single partner observes
the actions taken by a subset of the other partners and issues a report conditional
on that observation. No other partner has any additional information. In such a
model, whenever the observing partner can see the action chosen by at least one
other partner, the efficient action vector can be sustained in a perfect Bayesian
equilibrium by sharing rule that exhibits budget balance and limited liability.
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1. INTRODUCTION

In the wake of Holmstrom [ 3], there have been a number of attempts
to solve the problem of moral hazard in partnerships where output
depends deterministically on the unobserved actions taken by the players.
All of these have maintained the assumption that no partner has any infor-
mation about the action taken by any other partner, and none has been
able to implement the efficient action vector while maintaining limited
liability and budget balance among the players. This paper considers the
case where one player observes the actions taken by a subset of the other
players and issues a report conditional on that observation. No other
player has any information about the action taken by anyone else. It is
shown that whenever the observing player can see at least one other
player’s action, efficiency, limited liability, and budget balance can be
achieved simultaneously.

The model considered here is based on the partnership model used by
Holmstrom [3], in which N players produce an output that depends
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deterministically on the unobservable actions taken by the players. Given
a realized output, a sharing rule divides the output among the players.
Holmstrom proves the general result that if budget balance is required the
efficient output cannot be sustained in a Nash equilibrium. However, he
also shows that if the budget balancing constraint is relaxed, efficiency can
be sustained through the imposition of group penalties.

Legros and Matthews [5] show that in the Holmstrom model, budget
balanced sharing rules can implement nearly efficient outcomes in a
wide variety of games through the use of mixed strategies. However, in
approximating the efficient output arbitrarily closely, the punishments used
to enforce the equilibrium become arbitrarily large. Thus, as Legros and
Matthews discuss, this equilibrium does not exhibit limited liability as the
equilibrium expected output approaches the efficient output.

In this paper, Holmstrom’s assumption that no player observes the
action of any other player is replaced by the assumption that one player
observes the actions taken by a subset of the remaining players and is able
to issue a report conditional on that observation. The sharing rule divides
the output based on the aggregate output and the report. It is shown
that in this new game efficiency can be sustained in a perfect Bayesian
equilibrium while maintaining budget balance and limited liability.

The assumption that one partner observes the actions taken by a subset
of the other partners is not unreasonable. While in many everyday exam-
ples of partnerships it is clearly unrealistic to assume that a single principal
observes the actions taken by all agents, in these same examples it is
entirely natural that one agent should be able to observe the action taken
by another agent. It seems inevitable, for example, that geographic neighbors
(as in a cooperative farm) or neighbors in a production process (as in an
assembly line) should observe each other’s actions.

A related approach is taken by Ma [6], who shows that in a stochastic
production model with a principal and many agents whose actions are
mutually observable (although unobservable to the principal), there exists
a mechanism that implements the efficient output as the unique subgame
perfect equilibrium of the game. However, Ma is concerned with implemen-
ting the efficient action at the least cost to the principal, and consequently
he does not consider budget balance among the agents or moral hazard on
the part of all of the players, both of which are of central importance in the
partnership literature. In addition, Ma’s unique implementation comes at
the expense of more complete information being available to some of the
players.

Other approaches to the problem of moral hazard in partnerships have
considered stochastic production functions as in Legros and Matsushima
[4] and Williams and Radner [10], risk averse agents as in Rasmusen
[9], and repeated games as in Radner [8] and Radner, Myerson and
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Maskin [7]. Ben-Porath and Kahneman [ 1] consider joint monitoring as
it relates to folk theorems in repeated games of imperfect information.

Section 2 of this paper presents the basic model of a deterministic
partnership with joint monitoring. Section 3 contains the main results of
the paper, characterizing the circumstances under which efficiency is and is
not sustainable in this environment. Section 4 concludes.

2. MODEL AND ASSUMPTIONS

The model considered here is based on the partnership model used by
Holmstrom [3]. A partnership consists of a set of players I, indexed by
i=1,..,N. Each player i chooses an action a; from a feasible set of
actions A;. The vector (a,, ..., ay) is denoted by a. The output produced by
the partnership is given by the non-negative function y: XY , 4, > R.
Throughout the paper, arbitrary outputs will be denoted by y, and the
output associated with action vector a will be denoted by y(a).

Each player incurs a disutility of taking action «; that is given by the
nonnegative function v,(a,). Utility is quasilinear in output and effort,
taking the form u(z, a;) =z —v,(a;,), where z is the share of output assigned
to player i, and «; is the action he took.

In order for the problem to have a well defined and interesting solution,
make the following assumption:

(i) There exists a unique «¢* such that

N
a*:argmax a)— Z vi(a,)

aex‘,’-\zlAi i=1
A N
AR i) yah = 3 var)>0
i=1

(iii) If 3i such that y(a;, a* ;) = y, then Vj, 3la;
such that y(a;, a* ;) = y.

Part (iii) of AO is made for notational simplicity and is without loss
of generality. Throughout the paper, let y*=y(a*). Also, let a,(y)=
{a;|a;e A; and y(a;, a*;) =y}, and note that (AO) implies that a,(y) is
single valued.

Consider the case where player 1 perfectly observes the actions taken by
a subset of the players. In order to formalize the information structure,
partition the set of players 7 into the following three subsets. The first
subset, {1}, consists of player 1 alone. The second subset, 7, consists of
the set of players beside player 1 whose actions are observed by player 1.
Note that 1¢ 7,. The final subset, I,, consists of the players whose actions
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are not observed by player 1. We generalize the notation above in the usual
way, letting a,, refer to the action vector taken by I,, 4, refer to the action
set X, 4;, etc.

The game then proceeds as follows:

Stage 1. All players choose actions knowing the sharing rule that will
be implemented.

Stage 2. Player 1 sees the actions of the players in 7, and issues a
report conditional on the observation.

Stage 3. The sharing rule divides the output based on the realized
output and the report.

Strategies for players other than player 1 involve only choosing an
action. A strategy for player 1 involves both choosing an action and a
reporting rule, P: A, x A; — R, which specifies what player 1 will report at
each of his information sets at stage 2. For the impossibility results in
Propositions 1 and 2, the range of the reporting rule is left unspecified. In
the case where N>3 and 7, and 7, are both non-empty, a binary report
taking values in the set {G, B} is sufficient to sustain efficiency. When
N =3 and [, is empty but /, is not, taking the range of the reporting rule
to be the set of all subsets of 7, is sufficient to sustain efficiency.

The sharing rule z is a map from pairs (y, R) of realized output y and
report R to R, with z,(y, R) being the share assigned to player i. There
are several desirable characteristics of sharing rules for this game. First,
the sharing rule z maintains budget balance if for all vectors of actions «
and reports R, >V | z,(y, R) = y. Second, the sharing rule exhibits limited
liability if there exists a k such that for all y, R, and i, z;(y, R) > k. Finally,
a sharing rule z sustains efficiency if there exists a reporting rule P* such
that the strategy profile where every player other than player 1 plays his
efficient action, a and player 1 plays his efficient action af and the report-
ing rule P*, forms a perfect Bayesian equilibrium of the game.

3. RESULTS

The results in this section characterize the circumstances under which
efficiency can and cannot be sustained by a sharing rule that exhibits
budget balance and limited liability. The first two propositions borrow
heavily from Legros and Matthews [5]. Propositions 1 and 2 show that if
player 1 cannot see the actions of any other player, or if N =2, efficiency
is sustainable with budget balance and limited liability if and only if the
aggregate incentive to deviate is small. Proposition 3 shows that if player 1
can see the actions of some but not all of the other players (/; and I, are
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non-empty), efficiency can be sustained with budget balance and limited
liability. Finally, Proposition 4 shows that efficiency is sustainable with
budget balance and limited liability even if player 1 can see the actions
taken by all of the other players (I, empty).

As in Legros and Matthews [5], let g(y)=1/N[y—3>" , v;(a;,(y))—
W(a*)], where W(a*)= y* =Y~  v,(a}) is the welfare associated with the
efficient action vector a*.

ProrosITION 1 (Legros and Matthews [5]). If I,=(, efficiency is
sustainable with budget balance and limited liability if and only if g(y)<0
for all y.

Proof of Proposition 1. See Legros and Matthews [ 5], Theorem 1. The
sufficiency proof for the case where N =2 is reproduced in Lemma 1 below.
The necessity proof, slightly adapted, is used in the proof of Lemma 2. |

ProrosiTiON 2. If N=2 and I, = &, then efficiency is sustainable with
budget balance and limited liability if and only if g(y) <0 for all y.
Proposition 2 is proved using two lemmas.
LeEmmA 1 (Legros and Matthews [5]). Suppose N=2. If g(y) <0, then
efficiency is sustainable with budget balance and limited liability.
Proof of Lemma 1. Define the sharing rule
%k

2,00 R) =" —va?) +oa () + gy,

If player i chooses action aj, his net utility is

If player i chooses action a;(y) #aX*, his net utility is

T—vlar)+ gy, 2)

Noting that (1) is larger than (2) whenever g(y) <0 completes the proof.
|

LeEMMA 2. Suppose N =2. If efficiency is sustainable with budget balance
and limited liability then g(y)<O0 for all y.
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Proof of Lemma 2. Suppose that afF, P*, a¥ is an equilibrium. This
implies that for player 2:

so(y(af, ax(y)), P*(af, ay(y))) —va(ax(y)) < so(y*, P*(a*)) —vy(a3).
(3)

The best response condition for player 1 implies:

si(y(ay(p), a3), P*(af, ax(p))) —vi(a,(y)) <s:(y*, P*(a*)) —vy(af).
(4)

Summing (3) and (4) yields

This proves the lemma. |

Proof of Proposition 2. Follows directly from Lemmas 1 and 2. ||

CorOLLARY 1 (Legros and Matthews [5], Corollary 2). If I,= or
N=2 and each A, =R, a* eint(A,), v,() and y() are C', and for each i the
partial derivative 0y(a*)/0a;>0 there exists a y < y* such that g(y)>0.
Therefore efficiency is not sustainable.

Propositions 1 and 2 are essentially impossibility results. They show that
if I, = or N=2, efficiency is sustainable if and only if g(y) <0 for all y.
The intuition behind this condition is made apparent in the proof of
Lemma 2. For each player, the best response inequality implies that the
utility given to that player if he plays his efficient action must be larger
than his utility if he plays some other action. Suppose, for example, that
player 2 defects to an action that produces output y < y*. In order for this
to yield lower utility, the sharing rule must assign a relatively small
payment to player 2 when the output is y. However, if the sharing rule is
required to balance, decreasing the payment to player 2 when he defects
and the output is y entails increasing the reward to player 1 when he
mimics player 2’s defection by choosing the action «,(y) and reporting as
if player 2 had defected. To determine when neither of these defections is
profitable, sum the best response inequalities over both players. This yields
the requirement that the aggregate incentive to defect must be smaller than
the surplus when the efficient action is played. Why is this so? If it were
not, then in order to make the equilibrium payments large enough to keep
any player from defecting, the total payments when the efficient action
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vector is played would be larger than the total output, violating budget
balance.

A similar intuition applies in the case considered in Proposition 1, where
all partners observe only their own actions. In this case the sharing rule
cannot determine which player defected when the output is not y*. Hence
it must punish all players simultaneously. If the condition g( y) <0 does not
hold, then there is some output where the gains from deviation are so large
that it would require payments in excess of the efficient output when players
play their efficient actions in order to remove the temptation to deviate.

Also noteworthy is the fact that, as Legros and Matthews show, when-
ever g(y) <0 for all y, efficiency is sustainable by a sharing rule that does
not depend on the report made by player 1. Finally, Corollary 1 shows that
differentiability is sufficient for the existence of a y with g(y) >0, and con-
sequently for efficiency not to be sustainable. Hence while efficiency is
sustainable when g(y) <0 for all y, there are a wide variety of environ-
ments where this condition will not hold, including most of the well-
behaved environments considered in economic models.

Propositions 3 and 4 address the case where g(y) <0 for all y does not
hold. Proposition 3 states that if both I, and I, are non-empty (implying
N=3), then efficiency is sustainable with budget balance and limited
liability. Proposition 4 states that if N>3 and 7, is empty, efficiency is
sustainable with budget balance and limited liability. Together, Proposi-
tions 3 and 4 show that whenever N >3 and player 1 can observe at least
one additional player, efficiency is sustainable with budget balance and
limited liability.

The following lemma will be used in the proof of Proposition 3.

Lemma 3. For every player i, there is no action a; such that y(a,, a*;) >
y(a*), and for s€ (0, 1), sy(a;, a* ;) —v,(a;) = sy(a*) —v;(a}).

Proof of Lemma 3. y(a;,a*;)> y(a*) implies that (1 —s) y(a;, a*,) >
(1—13) y(a*). Adding this to sy(a,, a*;,)—v;(a;)=sy(a*)—v,(af) yields
that y(a;, a*;) —v;(a;) > y(a*)—v;(a}*). Subtracting 3, v;(a}) from both
sides yields that y(a;, a*,)—3 ., v,(a;) —v,(a;) > y(a*)—3,v,(a}), which
contradicts that «* is the efficient action vector. |

Intuitively, this lemma states that the efficient output is on the “diminish-
ing returns” part of the players’ utility functions. This implies that players
will not want to unilaterally deviate to an action that results in an output
that is larger than the efficient output.

PropoSITION 3. If N=3 and I, and I, are both nonempty, efficiency is
sustainable with budget balance and limited liability. That is, there exists a
sharing rule z(y, R) that is balanced and imposes limited liability and a
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reporting rule P* such that the strategies a,= af for players other than 1 and
(ak, P*) for player 1 form a perfect Bayesian equilibrium" of this game.

Proof of Proposition 3. Since (A0) holds, choose {s,} ¥, and ce(0, 1)
such that 5,>0, >~ | 5,=1, and the following condition holds:
(i) s,+c<1
(i) s y*—vy(af)>0
Cl1
D9 Gy (ﬁ—ﬁn>ﬂaﬂ—WW?ﬁﬂ) iel,
1
(iv)  s;p(a*)—v;(af)>0 JeL.
Consider the following sharing rule, z(y, R), which assigns a share of the

output z;( y, R) to each player based on the realized output y and 1’s report
Re{G, B}.

(s;+c¢)y R=G y=y*
cy R=G y<y*
Zl(y9R)= * _ *
s1y+ey R=B y=y
cy* R=B y<y*
c
<sl~—>y R=G y=y*
1]
(1—¢)
2R =< iy Y R=G y<y* el
1
0 R=B y>y*
0 R=B y<y*
5y R=G yz=y*
0 R=G y<y*
(Xier, i)y —cy*
z(y, R)= . ! = > p* el
(¥, R) s;y+ N1 y=y Jjel,
(Zielsi)+sl)y_cy* «
S; Y+ R=B y<y*

N—|| -1

! Perfect Bayesian equilibrium is considered instead of sequential equilibrium because
sequential equilibrium is defined for finite games only, and the possibility of uncountable
action sets is allowed here. In particular, the notion of consistent beliefs employed in sequen-
tial equilibrium fails to apply in games with general action sets. However, if the action sets
used here were finite, then the equilibrium discussed would be sequential. Furthermore, the
beliefs used here would likely satisfy any extension of the definition of consistent beliefs to
general action sets.
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This is a balanced sharing rule with limited liability.

In sharing rule z, note that y is the realized output of the production
function, while y* = y(a*) is the efficient output.

Define 1’s reporting rule P* as

B if ylay,a,,af)<y*

P*(als all) :{

G i ylay,a,,af)=y*

The rule P* is designed to be a best response along the path where the
players in I, play their efficient actions. Conditional on an action vector
(ay,ay,af), player I's preferences only depend on how cy(a,,a;, af)
compares to cy*, and the former at least as large as the latter whenever
y(ay, ap, af) > y*. Hence P* specifies a best report.

To prove that the above strategy profile is a perfect Bayesian equilibrium
of this game, it suffices to specify consistent beliefs and show that the
strategy is sequentially rational given these beliefs. Since players other than
player 1 move only once and with no information, we need only specify
beliefs at each of player 1’s information sets. Let /‘(rwuzl)(a) be the belief

probability assigned to the node associated with the action vector a
conditional on reaching information set (a,, a, ). We specify beliefs as

%) —
lu(u .a )((11, dap, a]—,) - 1
1> 4 1 2

That is, player 1 believes with probability 1 that if information set (a,, a,,)
is reached, player 1 and all players in 7, acted as observed, and the players in
I, played their efficient actions. All other nodes are assigned 0 probability
of being played. These beliefs are consistent in the sense of perfect Bayesian
equilibrium, since they agree with Bayes’ rule along the equilibrium path.

Next, sequential rationality is established in three steps.

Step 1. Consider player 1. Recall that P* was designed to be an
optimal reporting rule at each of 1’s information sets, given that all players
in I, play their efficient actions. Hence P* is sequentially rational given the
beliefs 1 as specified above. It remains to show that player 1’s choice of
action is also sequentially rational given that he reports according to P*.
Player 1’s choice of «, falls into three cases.

Case la. a,=af. In this case, y(a,,a*,)=yp* and 1 reports G,
getting payoff (s, + ¢) y* —v,(af).

Case 1b. a, #af and y(a,,a*,)<y* In this case 1 reports B,
getting payoff ¢y* —v,(a;).

Case lc. a, #af¥ and y(a,,a*,)> y*. In this case 1 reports G,
getting payoff (s, +¢) y(a,, a*,)—wv,(a).
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By (Cl1), s,y*—v,(af)>0>= —v,(a,). Hence a, =aj is preferred to any
action in case (1b). Lemma 3 proves that no action in case (1c) can have
a higher payoff than a, =af. Thus a, =af is optimal for 1 given that he
plays P* (which is sequentially rational independent of what action 1
plays) and the other players play their efficient actions. Hence (af, P*) is
a sequentially rational best response for player 1.

Step 2. Consider player ieI,. Player i’s strategy choice falls into three
cases:

Case 2a. a;=a}. In this case i’s payoff is (s;,—(¢/|I,])) y* —v,(a}),
since 1 reports G and y = y*.

Case 2b. a;#a¥ and y(a;,a*,)<y* In this case i’s payoff is
—v,(a;), since 1 reports B.

Case 2c. a;#a¥ and y(a;, a*;)>y* In this case i’s payoff is
(s;,— (¢/I1,])) y(a;, a*,)—v;(a;) since 1 reports G.

Since (s;—(¢/|I;])) y* —v;(a¥)>0>= —v;(a;) by (C1), choosing a,=a*
is preferred to any action in case (2b). Lemma 3 shows that no action in
case (2c) can have a payoff that is higher than that of a;=a. Hence
a;,=aj is i’s unique best response.

Step 3. Finally, consider player je I,. Player j’s actions can be divided
into the same three cases.

Case 3a. a;=aj*. In this case, y(a;, a* ;)= y* and 1 reports G, yielding
payoff s;y* —v,(a).

Case 3b. a; #a} and y(a;, a* ;) < y*. In this case 1 reports G, yielding
payoff —uv;(a)).

Case 3c. a;#a and y(a;, a* ;) > j*. In this case 1 reports G, yielding
payoff s;y(a;, a* ;) —v;(a;).

The same arguments show that a;=a/* is a best response for player ;.
Hence the strategy profile a,=a’;i#1, (aff, P*) is a perfect Bayesian
equilibrium of this game. ||

COROLLARY 2. If N=3 and |I,| =1 (meaning player 1 can only see the
action of one other player), efficiency is sustainable with budget balance and
limited liability.

The intuition behind Proposition 3 is relatively simple. The quantities cy
and cy* can be thought of as payments made by the players in I, to
player 1. The former is smaller than the latter whenever the realized output
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is less than the efficient output. Hence whenever a player in I, plays an
action that is too small, player 1 reports B. When a player in /; plays an
action that is larger than the efficient action, player 1 reports G. Since
Lemma 3 ensures that no player in 7, will want to choose an action yield-
ing output larger than y*, any such player’s choice reduces to choosing the
efficient action, yielding a report of G and a payoff of (s;,— (¢/|1,])) y*—
v,(af¥), or choosing an action yielding an output smaller than y*, leading
to a report of B and a payoff of —v;(a;). Since the former is positive, player
i chooses a*. In this way the reporting rule P* prevents the players in 7,
from cheating. Once we know that no player in I, will cheat, we can
impose group penalties on the remaining players whenever the output is
too small and player 1’s report is G. In this case, I; absorbs the output
taken from the other players, maintaining budget balance. In short, it is
player 1’s threat to report B if a player in /; cheats that causes them to
choose their efficient actions, and the ability of the players in /; to absorb
the group penalty imposed on I, when the output is too small and the
report is G that allows efficiency to be sustained and budget balance main-
tained. Furthermore, this is all done while maintaining limited liability.

Corollary 2 states that if N >3 and player 1 can only observe his own
action and the action taken by a single other player, efficiency is sustainable.
This illustrates how little additional information is needed to sustain efficiency.
All that is really needed is that there be some player who is observed by
player 1 and some player who is not. The unobserved player serves as a
sink to absorb the output when the observed player must be punished. This
yields further intuition for why efficiency cannot in general be sustained
when N =2. Since there is no player to absorb penalties imposed on
player 2 except player 1, budget balance implies that in punishing player 2,
player 1 is simultaneously rewarding himself, making it impossible to over-
come player 1’s moral hazard problem.

Proposition 4 shows that efficiency is sustainable when player 1 can
observe the actions taken by all of the other players (7, empty).

PROPOSITION 4. Suppose N =3 and I, = (J. Efficiency is sustainable with
budget balance and limited liability. That is, there exists a sharing rule
x(y, R) that is balanced and imposes limited liability and a reporting rule P*
such that the strategies a;=a} for players other than 1 and (af, P*) for
player 1 form a subgame perfect equilibrium® of this game.

Proof of Proposition 4. Since (A0) holds, choose {s;}~_, and ¢ (0, 1)
such that 5,>0, >~ | 5,=1, and the following condition holds.

2 Subgame perfect equilibrium is used here since all of the nodes at which player 1 must
report are singletons.
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(i) s;+c<l1
(i) sy y(a*

(iif) <s,-—N

> ya*)—v(a})>0  i#l

Consider the following sharing rule, x(y, R), in which the range of
player I’s reports is the set of all subsets of 7;. Hence 1’s reporting rule is

a map from action vectors a to B< I, and x;(y,

output assigned to player i.

R) is the share of the

(s;+c¢)y y=zy* R=¢
cy y<y* R=¢
xl(ysR): * *
s1y+cey y=y* R#yg
cy* y<y* R#J
(<S-— < )y y=zy* R=0
TN—1 -
<s +S1 > y<y* R=(
TTN—
<s,y < ) y=y* ieB
xi(y’R): l?él
y<y* ieB
=>y* i¢B
$;y— <N ) y=y* i¢
(S +ZjeBs)y_Cy %
\Si y+ N_|B—1 y<y* i¢B

This is a balanced sharing rule with limited liability.
Specify the following reporting rule for player 1.

g y(a)= p*
P (a)_{B:{”ieBiffai?éai*} '

Intuitively, whenever the realized output is too small, player 1 announces
the set of players B who did not play their efficient actions. The proof
proceeds in two steps and is similar to the proof of Proposition 3.

Step 1. Consider player 1. Since 1 reports P*(a) = ¢ whenever y(a) > y*
and P*(a) = B # J whenever y(a) < y*, P*(a) is an optimal reporting rule
at each information set a.
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If 1 chooses action af, he gets utility (s, +¢) y* —v,(a¥). If he chooses
a, such that y(a,,a*,)< y* he reports P*(a,,a*,)=B#  and gets
payoff ¢y* —v(a,). By (C2), the former is always larger than the latter. If he
chooses @, such that y(a,,a*,)> y*, he gets (s, +c¢) y(a,,a*,)—v,(ay).
Lemma 3 ensures that no such action can yield higher utility than a, =aj.
Hence a, =af, P*(a) is a best response to a* ;.

Step 2. Consider player i# 1. If i plays action «;, he gets utility (s, —
(¢/N—1)) y*—wv;(af). If i plays action g, such that y(a;, a* ;) < y*, he gets
utility —wv;(a;), since 1 reports ie B. Since (s;,—(¢/N—1))y* —v;(af) is
assumed positive in (C2), a is preferred to any action such that y(a;, a* ;)
< y* |[If i plays action qa; such that y(a;, a*;) > y*, he gets payoff
(s;,— (¢/N—1)) y(a;, a*,)—v,(a¥). Lemma 3 ensures that no such action
can yield higher utility than @, =a}*. This completes the proof. ||

The intuition for how this mechanism works is the same as in the mechanism
used to prove Proposition 3. Indeed, the mechanism used in Proposition 4,
slightly adapted, could have been used to prove Proposition 3. However, as
compared to the mechanism used in Proposition 3, this mechanism involves
reports with a more complex range. In the Proposition 4 mechanism,
player 1 is indifferent between reporting any non-empty subset B of I,
whenever y < y*. This is because, conditional on his action, the reward
player 1 gets for making report R depends only on the size of the output
(which 1 knows), and whether his report is the empty set or some non-
empty subset of /,. Hence, conditional on a, =af, the truthful reporting
rule “ie B if and only if a; #a*” is one optimal reporting rule for player 1.
There are also many others. However, when 1 plays this reporting rule, it
reduces the decisions of the remaining players to choosing between playing
a’ and getting a positive utility and playing some other a; # a* and getting
a negative utility, and this is sufficient to sustain efficiency.

Before concluding, several general comments about the mechanisms
employed here are in order. First, the mechanisms employed in Propositions 3
and 4 satisfy a slightly stronger version of limited liability than the one
used in the original definition. Earlier, limited liability was said to hold
whenever there exists a k such that for all i, y, and R, z;(y, R) = k. That
is, we required all payments under the sharing rule to be larger than k.
The sharing rules used in Propositions 3 and 4 are such that for any k <0,
z;(y, R) =k for ¢ chosen sufficiently small. In other words, by choosing ¢
sufficiently small, any negative payments the sharing rules impose can be
made arbitrarily small. Furthermore, none of the results in this paper
depend on ¢ being large enough. Thus, in effect, the mechanisms do not
depend on any assumptions about the initial wealth of the partners.

Finally, consider the vulnerability to coalition defections of the mechanisms
used here. Indeed, both mechanisms are vulnerable to coalition defections
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if side payments are permitted. However, if side payments are not permit-
ted, then there is no coalition deviation to a different action vector that is
weakly preferred by all members of the coalition.? This arises from the fact
that in forcing the mechanism to be balanced, we necessarily offset a reward
to one agent with punishments to other agents. The fact that agents’ action
choices are opposed to each other in this manner accounts for the lack of
coalition-preferred deviations.

4. CONCLUSION

The results in this paper characterize when efficiency is sustainable with
budget balance and limited liability in partnerships with joint monitoring.
The main positive result is that efficiency is sustainable with budget balance
whenever there are at least three players and player 1 can see the action
taken by at least one other player. The proofs of Propositions 3 and 4 pre-
sent simple balanced mechanisms that sustain efficiency, although there
almost certainly are others.

The mechanisms employed in sustaining efficiency, in conjunction with
the Legros and Matthews [5] result, point toward a general method that
may be useful in solving a wide variety of mechanism design problems
where budget balance is a concern. First, a mechanism is designed that
aligns the incentives of some of the players on the set of outcomes that can
be reached through unilateral deviation by one of these players. Once it is
known that these players will behave as desired, they can be used to absorb
group penalties imposed on the remaining players whenever the outcome
could not have arisen through unilateral deviation by the controlled group.
This implements the desired action profile. In this paper, player 1’s report-
ing rule aligns the incentives of the players in I, when y > y* and R=G or
y<y* and R= B, and group penalties imposed when y< y* and R=G
discipline the remaining players. In Legros and Matthews [ 5], player 1 is
exactly compensated for his cost of effort whenever the output is such that
he could have caused it by unilateral deviation. His moral hazard problem
eliminated, player 1 is then used to absorb group penalties imposed on the
other players whenever the realized output could not have resulted from
unilateral deviation by player 1. This implements the (approximately)
efficient outcome. The success of these two approaches suggests that the
general technique of controlling the incentives of one player and then using
that player to absorb group penalties may be a useful tool in designing
balanced mechanisms to solve a wide variety of problems.

3T thank the referee for this observation.
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