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1 Introduction

When two parties bargain over the sale of a good and one party rejects the other’s offer, a critical

question arises: Was that offer final, or will an improved offer be forthcoming? This uncertainty

may lead the offer recipient to accept less-advantageous current terms to avoid the possibility that

the offerer will terminate the negotiation following a rejection. A risk averse offer recipient may

make significant concessions to avoid even a modest threat of termination.1 This paper shows how

the offering party may be able to take advantage of this effect to improve his expected outcome

by using a Possibly-Final Offer (PFO), a strategy that couples an initial offer with a positive

probability that the offerer will walk away following a rejection rather than make a second, more

attractive offer.

We illustrate the power of PFOs in the presence of risk averse buyers by studying a buyer-seller

interaction in which the seller makes offers to a buyer whose value for the object for sale (either

high or low) is unknown to the seller. Absent randomization, the seller’s optimal strategy takes

one of two forms. He can either sell to all buyers at the low-value buyers’ reservation value, or he

can sell only to the high-value buyers at their reservation value. The fundamental Law of Demand

dictates the outcome: The seller can either sell to some buyers at a high price or to all buyers at

a low price, but he cannot do both simultaneously. Implementing deterministic mechanisms over

time cannot help the seller.2 If the seller offers a high price followed by a lower one, all buyers will

simply wait for the lower price.

A PFO strategy requires probabilistic play by the seller. In the two-type case, the seller makes an

initial price offer. If that offer is rejected, he terminates the negotiation with a positive probability

less than one; with the complementary probability he makes an improved (truly final) offer. When

compared to the deterministic strategy of selling to all buyers at a price equal to the low-type buyer’s

reservation value, making the seller’s initial offer “possibly-final” offers the benefit of allowing him

to charge a higher initial price to high-valued buyers. The cost of this strategy is that, in the event

of a rejection, the seller terminates the transaction with some probability, walking away from the

possibility of completing the sale via a second, lower-priced offer. The main insight of this paper is

that as buyer risk aversion increases, the balance tips in favor of the former effect: the seller is able

to significantly raise the initial price charged to high-valued buyers using only a small threat of

1For clarity, throughout the paper, we treat the seller as male and the buyer as female.
2 Implicitly, we are talking about time periods short enough that time preference does not play a significant role.
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termination.3 Thus, for sufficiently risk averse buyers,4 PFOs outperform deterministic strategies

and may even be Pareto improving.5 In the limit, as buyers become infinitely risk averse, the seller

is effectively able to charge each buyer type her reservation value while terminating the transaction

without making a sale with only arbitrarily small probability. Almost all of buyers’ surplus is

thereby extracted.

Two recent mergers illustrate PFOs at play. When Marathon Oil acquired Pennaco in a cash

deal in December 2000, it made an initial offer at $17, which was rejected. Such an outcome was

inevitable; first offers in such circumstances are rarely presented as or thought to be final offers.

Its second offer, a week later, was $19. Pennaco’s Board instructed its Chair/CEO to push for $20

or at least $19.50. Marathon stated, however, that $19 was its “absolute, final, best, top offer.”

Pennaco accepted. In effect, Marathon made one serious offer, and framed it as a final offer. Had

Pennaco rejected, we do not know whether an improved offer would have been forthcoming. Clearly

Pennaco feared it would not.6

The takeover of German telecommunications giant Mannesmann (M) by Vodafone (V) presents

a quite different picture. On November 15, 1999, V offered 43.7 of its shares for each Mannesmann

share. After a quick rejection, V came back four days later with a 53.7 share hostile offer (240

euro value). Ten days later, M rejected this offer as well. Three weeks later, V noted publicly that

its 53.7 share offer was final, and would expire on February 7, 2000. On February 4, M agreed

to a friendly merger providing 58.9 V shares for each M share. Since V’s shares rose over this

period, the value per M share was 353 euros on this date. Despite a firmly announced final offer,

V still increased its payment in shares by a further 10%, with monetary value per M share soaring

by nearly 40% from the date of the “final” offer. Thus concluded the largest merger of the 20th

3Our results do not depend on exploiting differences in buyer risk aversion. Rather, they rely on (in the two-

type case) risk aversion for the higher-valued buyer, and the difference in willingness-to-pay between the high- and

low-valued buyers. Hence, these results apply even when all types have the same attitude toward risk.
4When buyers are risk neutral, we show that PFO strategies cannot benefit the seller. This is an illustration of

Riley and Zeckhauser’ (1983) “no haggling” result, which shows that it cannot pay to “haggle” when buyers are risk

neutral. The seller should commit to a firm price and refuse to revise his offer, or indeed entertain any offer from a

rejecting buyer.
5PFOs may also be superior to deterministic strategies for intermediate levels of risk aversion. We show that, for

any level of buyer risk aversion, there is a range of buyer populations (mixtures of high- and low-valued buyers) for

which PFOs outperform determinstic strategies.
6Some Pennaco shareholders launched an unsuccessful suit alleging their Board did not meet its fiduciary duties.

The potential for such suits makes it almost inevitable that in corporate acquisitions first offers are refused, implying

that PFOs can only start with second offers. In re Pennaco Energy, 787 A.2d 691 (Del. Ch. 2001).
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century.7 Facing a PFO, Pennaco blinked; Mannesmann rejected and Vodafone offered more.8

The problem of selling to risk-averse buyers is considered by Matthews (1983), and by Maskin

and Riley (1984). Matthews considers a monopolist who sells to heterogeneous, risk-averse buyers.

The optimal mechanism, he shows, has the buyer who pays more up front get a greater probability

of receiving the object. Maskin and Riley (1984) examine optimal auctions when buyers are risk

averse and show that they impose risk on all but the most eager buyers.

Our results add to the Matthews (1983) and Maskin and Riley (1984) studies of optimal mech-

anisms with risk averse buyers in three important ways. First, because the optimal mechanisms

they consider involve buyers making payments even when they do not receive the object, neither

captures a key feature of practical buyer-seller interactions: should the buyer and seller not reach

agreement, no transfers are made. Second, both Matthews (1983) and Maskin and Riley (1984)

make specific assumptions about the form of the buyer’s utility function and the type of buyer

heterogeneity. The present paper places no restrictions on utility functions beyond requiring risk

aversion. Third, the prior papers dealt with uni-dimensional objects, whereas the present paper

extends to the case of multidimensional objects.

Our PFO mechanism has a parallel to an auction with a random reserve price. The idea that

such reserve prices may play a role in increasing seller revenue has gained some attention recently

in the auctions literature. In a related paper, Li and Tan (2000) show that when buyers are

sufficiently risk averse, the seller can increase his expected profit in a first-price auction by using

a hidden, random reserve price instead of an announced, certain one. The intuition behind the

desirability of a hidden reserve is the same as that which drives our results. The risk of losing

the object because of bidding below the reserve price drives the risk averse bidder to increase his

bid. Such secret reserve prices are employed in real-world auctions. Bajari and Hortacsu (2003)

empirically investigate the role of secret reserve prices on eBay, and Li and Perrigne (2003) and

Perrigne (2003) analyze their role in timber auctions.9

Mechanisms that capitalize on risk have also been shown to be useful in other contexts, at

least in theory, since randomization can relax incentive-compatibility constraints. For example,

7See The Finacial Times, Feb. 3, 2000, Feb. 4, 2000, and Feb. 5, 2000 for details.
8Knowledgeable observers believe that there was significant emotion and some hostility within Mannesmann while

the “final offer” was open, and that Vodafone may have raised its offer primarily to dampen emotion and earn

goodwill, i.e., to secure a benevolent victory. Part of the uncertainty surrounding PFOs involving mergers is whether

the acquirer will respond to such concerns.
9We discuss the connection between our pricing mechanism and an auction in Section 2.4.
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there is a substantial literature on optimal taxation that shows that the government can sometimes

benefit from implementing a random taxation schedule (see Weiss, 1976, and Brito et. al., 1995

and references therein), and Arnott and Stiglitz (1988) show that randomization may be useful in

insurance problems. However, the use of random mechanisms has often been criticized as being

impractical.10 This criticism argues that, in order to be useful in contracting, random mechanisms

must be credible and verifiable. However, from a single realization, it is impossible to detect

whether a party is following a particular random strategy. Such inferences are only possible in the

long run, once sufficient statistical evidence has been amassed. However, since most interactions

take place over much shorter time frames, it may be difficult for principals to credibly commit to

using stochastic mechanisms. If so, that may prevent them from reaping their benefits.

Our mechanism resists this criticism. Because both buyer and seller return to the status quo

should the seller terminate the transaction following an initial rejection, enforceability (and there-

fore verifiability) is not an issue. True, in order for the seller to benefit from the PFO, buyers must

believe there is some likelihood that the seller will not offer a lower price following rejection, but

this is essentially the same issue that arises when the seller follows the deterministic strategy of

charging a high price and selling only to high-valued buyers, a practice that some sellers certainly

succeed in employing. Further, our analysis shows that not only does the best PFO outperform

deterministic strategies, but also that, provided buyers are sufficiently risk averse, small deviations

from deterministic strategies are also beneficial for the seller. Thus it is not necessary for the seller

to commit to a particular termination probability to benefit from using a PFO. Often it is enough

merely to sow the suspicion that termination is possible. The question then becomes whether the

seller can find ways to convince buyers that chance plays a role in the process. A number of com-

monly observed features of buyer-seller interactions help to achieve this goal, such as delegation,

automatic discounting, fostering competition among buyers, keeping stock low, and others. We

explore a number of these examples in greater detail in Section 4.

An additional criticism of random mechanisms is that they are too complicated to be useful in

practical situations. The mechanisms proposed in the optimal auctions and taxation literatures

are highly complex and rely on buyers/taxpayers having a nuanced understanding of incentive

constraints in order to generate their benefits. Our model illustrates that, in the presence of risk

aversion, even simple random mechanisms can be beneficial. And, by implementing our random

mechanism over time, we believe that it becomes easier for buyers to understand and for sellers

10See, for example, Laffont and Martimort (2002).
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to implement. Finally, as our examples illustrate, buyer uncertainty about whether the seller will

come back with a new offer plays an important role in many real-world sales situations.

This paper proceeds as follows. Section 2 describes the game between seller and buyer con-

tracting over the price of a standardized good. It shows that a PFO strategy is optimal whenever

the buyer is risk averse, at least for some distributions of buyers. We then extend the analysis in

several ways, considering endogenous commitment by the seller, multiple types, and multidimen-

sional objects, and relaxing the assumption that buyers’ utility functions are additively separable

in money. Section 4 discusses ways in which sellers may operationalize PFO strategies. Section 5

concludes. The proofs are presented in Appendix A.

2 Possibly-Final Offers: The Theory

2.1 Timing

A risk-neutral seller offers a single, indivisible object for sale. The seller makes the buyer an offer,

and, should that offer be rejected, may either make a more attractive second offer or terminate the

interaction. With two types of buyers, no more than two rounds of offers will be necessary, and

we therefore model the interaction as a two-stage game, represented schematically in Figure 1. In

the first stage, the seller makes the buyer an offer, which she may either accept or reject. If the

buyer accepts, the transaction takes place according to the offer and the game ends. If the buyer

rejects, the game ends with probability y. That is, with probability y, the initial offer is final.

We will often refer to y as the seller’s “walk-away” probability. With probability 1− y, the game

continues to stage 2, where the seller makes another (truly final) offer and the buyer has another

opportunity to accept or reject it.

A strategy for the seller consists of first and second prices p1 and p2, and the probability y that

the seller’s initial offer is final. Formally, the seller follows a PFO strategy if he chooses 0 < y < 1.

We refer to strategies with y = 0 or y = 1 as deterministic strategies. For each buyer type, the

buyer’s strategy specifies, for each possible seller’s strategy, whether the buyer accepts or rejects

each of the seller’s offers. Our solution concept is subgame-perfect Nash equilibrium. Hence we

require each type of buyer to play a best response to the seller’s strategy.

Although we describe the buyer-seller interaction as taking place over time, our extensive form

is equivalent to a game with no time element at all. In effect, the seller offers the buyer the choice

between two possible contracts. The first contract offers to sell the item for sure for a price, p1.
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 Stage 1 

 p1 

 Accept 

Reject 

 Sell at p1. 

 1-y 

 y 

 Terminates 

 p2 

 Accept

Reject 

 Sell at p2. 

 Terminates. 

 Second
 Offer 

  
 Stage 2 

First   
Offer 

Figure 1: The Sequence of the Game.

The second offers a lottery where with probability 1− y the buyer may purchase the item for price

p2, and with probability y no offer is made (or the price is infinite). We sacrifice no generality

by modeling the situation as being formally equivalent to a static problem, since our results do

not depend on the time preferences of the buyers. In addition, we argue that the crucial element

that motivates the use of PFO strategies in the real world is risk aversion, not time preference.11

In many buyer-seller interactions, the time lapse between the first and second offers is very short,

usually less than a day, and frequently just a few minutes or seconds. The analysis of this paper

could be extended to include time preference. However, doing so would complicate the model

without providing additional insights.

We assume that sellers are able to commit to their strategies. Such commitments have two

components. First, it must be that if the buyer rejects the seller’s first offer, she cannot come

back later and accept it. That is, the seller commits to the fact that once rejected, p1 is “off the

table”. Second, the seller commits to terminating the game with a positive probability, which

implies that sometimes a second offer is not made even though buyer and seller would both benefit

were there one. While some real-world sellers may be unable to make such commitments, later in

the paper we discuss several buyer-seller situations where sellers do make such commitments, and

we show how some commonly observed sales practices may help them to do so. In the extensions,

we present a simple model with endogenous commitment.

11As we discuss in the conclusion, loss aversion may also play a role, and our results extend to the case of loss-averse

buyers.
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2.2 Model

In our basic model, a seller offers a single unit of a good for sale to a buyer. The seller is assumed

to be risk neutral and to choose his strategy to maximize expected profit. Each buyer knows her

own reservation value, but the seller knows only the distribution of buyer types.

There are two types of buyers. With probability 0 < μ < 1 the buyer is HIGH. Otherwise she

is LOW. Throughout the paper, we will use the subscript h to denote HIGH, l to denote LOW,

and t ∈ {h, l} to stand for a generic type.
HIGH receives utility uh (q, p) = θhq+vh (wh − pq), where q = 1 if she purchases the object and

0 if she does not, and p is the price paid for the object. HIGH’s utility for after-expenditure money,

vh () , is assumed to be strictly increasing, strictly concave, and twice differentiable, with vh (wh) =

0. With probability 1−μ, the buyer is LOW and has utility function ul (q, p) = θlq+ vl (wl − pq) ,

where q ∈ {0, 1} equals 1 if she purchases the object and 0 otherwise, and vl () is strictly increasing
with vl (wl) = 0.

Let rh and rl be the reservation prices of HIGH and LOW respectively, defined as:

vt (wt − rt) = −θt for t ∈ {h, l} . (1)

We are interested in examining the effect of increasing the buyer’s risk aversion while holding

willingness-to-pay constant. Thus we take the buyers’ reservation prices rt as our primitives, and

let θt be defined implicitly according to (1). We assume that HIGH is willing to pay more for the

object than LOW, i.e., rh > rl.

In the absence of PFOs, the seller’s optimal contract takes one of two forms. The largest price

at which both HIGH and LOW will buy is rl, and thus the maximum profit the seller can earn

while selling to both types is rl. On the other hand, if the seller is willing to sell only to HIGH,

he can charge a price as high as rh. Since the probability of the buyer being HIGH is μ, the seller

expects profit μrh in this case. Finally, selling to both types offers higher profit than selling only

to HIGH whenever

rl ≥ μrh.

This implies that the seller will choose to sell only to both types of buyers whenever μ ≤ rl
rh
, and

will sell only to HIGH otherwise. Throughout the paper we will refer to this as the “deterministic”

case.
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2.3 Results

The seller’s objective is to choose p1, p2, and y to maximize his expected profit. Without loss of

generality, we assume that the seller designs the offers so that the first offer is acceptable to HIGH

but not to LOW, while the second offer, if made, is acceptable to both types.12

The seller’s problem is, in essence, a monopolistic screening problem, with the added feature

that the mechanisms available to the seller have been expanded to include those where the seller

can commit to making some offers only probabilistically. We adopt the standard approach to such

problems, and write the seller’s problem as a constrained-maximization problem:

max
p1,p2,y

μp1 + (1− y) (1− μ) p2

s.t. θh + vh (wh − p1) ≥ 0, (2)

θl + vl (wl − p2) ≥ 0, (3)

θh + vh (wh − p1) ≥ (1− y) (θh + vh (wh − p2)) , and (4)

(1− y) (θl + vl (wl − p2)) ≥ θl + vl (wl − p1) . (5)

The constraints are the standard constraints in a screening problem. Conditions (2) and (3) are

the participation constraints. HIGH must prefer the first offer to the status quo, (2), and LOW

must prefer the second offer, if one is made, to the status quo, (3). Conditions (4) and (5) are the

incentive-compatibility constraints. HIGH must prefer the first offer to the uncertain prospect of

a second offer, (4), and LOW must prefer to wait for a second offer rather than accept the first

offer, (5). Again, we assume that if the buyer is indifferent between buying and not, she buys.

Before continuing, note that if the seller could observe the buyer’s type, he would charge rh to

HIGH and rl to LOW, earning ex ante expected profit μrh + (1− μ) rl. However, such a scheme

violates (4).

As is standard in screening problems, we begin by arguing that constraints (3) and (4) bind at

the seller’s optimal solution, and that (2) and (5) can be safely ignored. Optimal values of p1,

12We ignore the case where the first offer is rejected, since if that were to occur it would be optimal to make a

second offer that is either accepted by all types or only by HIGH. The case where the second offer is accepted by

both types is equivalent to one where p1 = p2, p2 is acceptable to LOW, and the second offer is made with probability

1, i.e., y = 0. The case where the second offer is accepted only by HIGH is equivalent to one where that offer is made

first, and no second offer is made, y = 1. Similarly, since the case where LOW rejects the second offer is equivalent

to one where the second offer is made with zero probability, we can ignore that case as well.
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p2, and y are denoted with asterisks. LOW’s participation constraint, (3), clearly binds. Hence

p∗2 = rl. Constraint (4) can be rewritten as:

vh (wh − p1) ≥ −θh + (1− y) (θh + vh (wh − p2))

≥ y (−θh) + (1− y) vh (wh − p2)

≥ yvh (wh − rh) + (1− y) vh (wh − rl) . (6)

Since the objective function increases in p1, this constraint must bind at the optimum. Since vh ()

is strictly increasing, this assures that rl ≤ p∗1 ≤ rh, and p∗2 = rl and rl ≤ p∗1 ≤ rh imply (2) and

(5) are satisfied at the optimum.

By (6), when p1 is set at its profit-maximizing level, wh − p∗1 is the certainty equivalent of a

lottery offering wh−rh with probability y and wh−rl with probability (1− y). Formally, implicitly

define p1 (y) according to:

vh (wh − p1 (y)) ≡ yvh (wh − rh) + (1− y) vh (wh − rl) . (7)

It is easily shown that p1 (y) is strictly increasing and strictly concave in y, and that p1 (0) = rl

and p1 (1) = rh.

Based on the preceding arguments, the seller’s problem can be written as an unconstrained-

optimization problem:

max
0≤y≤1

μp1 (y) + (1− y) (1− μ) rl. (8)

Let y∗ be the walk-away probability that maximizes the seller’s expected profit. The first-order

condition is given by:

μp01 (y
∗)− (1− μ) rl

⎧⎪⎪⎪⎨⎪⎪⎪⎩
≤ 0 if y∗ = 0

= 0 if 0 < y∗ < 1

≥ 0 if y∗ = 1

. (9)

A PFO strategy is optimal if there exists a y∗ such that (9) holds with equality. If y∗ = 0, then

the seller adopts the deterministic strategy of charging p∗1 = p∗2 = rl and selling to all buyers

immediately, while if y∗ = 1 the seller adopts the deterministic strategy of selling only to HIGH at

price rh.

Whether a PFO strategy is desirable in a particular situation depends on the relationship

between buyer risk aversion and the mix of high- and low-valued buyers in the population. The

next several propositions explore this relationship.
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Proposition 1 If HIGH is risk averse, a PFO offers higher profit than deterministic contracting

when μ = rl
rh
.

Proof. All proofs are presented in the Appendix.

Proposition 2 For any μ such that 0 < μ < 1, if HIGH is sufficiently risk averse, using a PFO

increases the seller’s expected profit: 0 < y∗ < 1. As HIGH becomes infinitely risk averse, the

seller’s expected profit converges in the limit to the full-information profit of μrh + (1− μ) rl.

The same basic intuition underlies Propositions 1 and 2. To understand the trade-offs the

seller faces, consider the seller making a second offer of rl with probability 1, i.e., y = 0. HIGH’s

incentive-compatibility constraint implies that the highest first price that HIGH will accept will be

rl, since HIGH can always wait for the second offer. Suppose, now, that the seller introduces a

slight probability ε > 0 of walking away after an initial rejection. By walking away with positive

probability, he sacrifices some expected profit due to sales not made to LOW. However, since there

is a positive probability that the seller’s initial offer is a final offer, the risk of termination makes

rejecting the first offer in hopes of a better second offer less attractive to HIGH (i.e., it relaxes her

incentive-compatibility constraint), and thus increases the maximum first offer that HIGH is willing

to accept, p1 (ε) > rl. Thus, in moving from a deterministic offer to a PFO, the two countervailing

quantities that must be weighed against each other are the decrease in profit due to selling to LOW

only part of the time, −ε (1− μ) rl, and the increase in profit from selling to HIGH at the higher

price, μ (p1 (ε)− rl). If p1 (ε) is small, then the loss on sales forgone outweighs the gain due to

increasing the first-round price, while when p1 (ε) is large the gain from the higher price outweighs

the loss due to missed sales.

When μ = rl
rh
and HIGH is risk neutral, the seller is exactly indifferent between selling only to

HIGH at price rh, selling to both HIGH and LOW at rl, or using a PFO strategy with 0 < y < 1,

p1 = p1 (y), and p2 = rl. Since introducing risk aversion increases HIGH’s willingness-to-pay in

the first round (i.e., p1 (y)), any amount of risk aversion tips the balance in favor of a PFO strategy

when μ = rl
rh
. For other values of μ, deterministic strategies do strictly better than PFO strategies

against a risk neutral buyer. However, as risk aversion increases, p1 (y) increases, eventually

approaching rh as risk aversion becomes infinite. Consequently, for any μ strictly between 0 and 1

there is a level of risk aversion high enough that PFOs outperform deterministic strategies, and as

HIGH becomes infinitely risk averse, the seller is able to induce HIGH to pay a price near rh even

when the chance of the initial offer being final is small (i.e., y is near 0), the result being that the
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seller’s expected profit approaches the full-information maximum, μrh + (1− μ) rl.

Proposition 2 brings to mind Corollary 1 in Matthews (1983), which shows that when the

Arrow-Pratt coefficient of the buyers’ constant absolute risk aversion (CARA) utility functions

goes to infinity, the seller’s expected profit converges to the full-information maximum. However,

Proposition 2 applies whenever the buyers are sufficiently risk averse, regardless of the form of

the utility function, and thus extends the Matthews result beyond the CARA case. Although

Proposition 2 is stated with only two types, we show in Proposition 7 that this assumption is not

crucial.

The intuition underlying Proposition 2 is quite robust, and would apply across a wide variety

of environments. For example, suppose that the buyer’s value is not fixed. Rather, it is either 8

or 10, with transitions between the two being governed by a Markov process. If the buyer’s value

were known, the seller would wait for the buyer to have value 10 and then sell her the object for a

price of (nearly) 10. If the seller is patient and the buyer is sufficiently risk averse, the seller can

earn nearly this much profit by quoting a price near 10 and threatening to walk away with a small

probability. In this case, the buyer purchases the object at this high price the first time her value

is 10 rather than risk losing it while waiting for a lower price.

The arguments in support of Propositions 1 and 2 also establish that, for any μ, given sufficient

risk aversion, small deviations from the optimal deterministic contract increase profit. Thus, these

results imply that if the optimal deterministic strategy is to sell only to high-valued buyers, then

the seller can increase profit by convincing buyers that there is a small probability of continuation.

Similarly, if the optimal deterministic strategy is to sell to all buyers, then if the seller can convince

the buyers that there is a small probability of termination following a rejection of his initial offer,

he can increase the initial price high-valued buyers will accept sufficiently to offset any losses due

to lost opportunities to sell to low-valued buyers. Thus, it is not necessary for the seller to be

able to commit to a particular PFO in order to benefit, and even PFOs that are very similar to the

optimal deterministic strategies can benefit the seller.

In addition to potentially increasing the seller’s profit, PFO strategies may also be Pareto

improving. In the absence of randomization, the seller’s optimal strategy is either to sell to all

buyers at the low-type buyer’s reservation value or to sell to only to high-valued buyers at their

reservation value. In the latter case, all buyers earn zero surplus. If in such a case a PFO is optimal

for the seller, then by definition it increases the seller’s profit. Since the initial price offered by the

seller under the optimal PFO is lower than the high-valued buyer’s reservation value, high-valued
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buyers earn a positive surplus under the optimal PFO. Finally, since a low-valued buyer either is

not offered the object or purchases it at her reservation value, the low-valued buyer continues to

earn zero surplus. Although our mechanism is quite different, this phenomenon is similar in spirit

to the one investigated by Deneckere and McAfee (1996) who illustrate how manufacturers offer

high- and low-quality versions of their product as a means of price discrimination and show that

such strategies may be Pareto improving.13

The converse to the first part of Proposition 2 is also true. If HIGH is sufficiently tolerant of

risk, the seller maximizes profit either by selling to all buyers immediately, i.e., setting p1 = p2 = rl,

and y = 0, or by selling only to HIGH buyers, i.e., setting p1 = rh, and y = 1.14 This leads to

Proposition 3, a restatement of the Riley-Zeckhauser (1983) “no haggling” result in the current

environment.15

Proposition 3 If HIGH is risk neutral, the seller cannot increase his expected profit by using a

PFO strategy rather than the optimal deterministic strategy.

Propositions 4 and 5 establish the natural comparative statics of our problem.

Proposition 4 For any μ such that 0 < μ < 1, the seller’s expected profit is non-decreasing in

the level of HIGH’s risk aversion. If a PFO strategy is optimal, then an increase in HIGH’s risk

aversion strictly increases the seller’s expected profit.

Proposition 4 holds the population mix fixed and asks what happens when HIGH’s utility

function changes. A related question is how, holding the buyers’ utility functions fixed, the

optimal contract changes as the proportion of HIGHs in the population changes. In other words,

for which values of μ does using a PFO have the greatest potential, and how does the set of values

of μ for which PFOs are optimal expand as the buyers become more risk averse?

As we already knew, if HIGH is risk neutral, using a PFO cannot improve profit. In this case,

the seller sells to both HIGH and LOW for low μ and sells only to HIGH for high μ, switching as

13They use the term “damaged goods” to refer to such a cost-quality situation. Their prime example is an Intel

computer chip whose capabilities were constrained to produce a lower-quality chip. A probabilistic second offer is in

some sense a good that is “damaged” to make it less appealing to high-value buyers, and therefore to promote price

discrimination.
14This is true for any μ strictly between 0 and 1, although for μ = rl

rh
haggling will always be optimal unless HIGH

is risk neutral.
15Proposition 3 also applies if the buyers are risk-loving.
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Figure 2: Optimal Strategy, Risk Aversion, and Buyer Mix.

μ crosses the critical level, μ = rl
rh
. Once risk aversion enters, this balance point remains critical;

it is the first place where the optimality of a PFO emerges. Once HIGH becomes strictly risk

averse, it becomes optimal to use a PFO for μ = rl
rh
and for a closed interval around it. Further

increases in risk aversion strictly spread the range over which using a PFO is optimal. In the limit,

it is optimal to use a PFO for all strictly mixed populations μ such that 0 < μ < 1. Figure 2

summarizes the answers to these questions. Proposition 5 derives them.

Proposition 5 If HIGH is risk averse, then:

5a) the set of μ for which it is optimal for the seller to use a PFO is a closed interval, [μ0, μ1] ,where

0 < μ0 <
rl
rh

< μ1 < 1.

5b) increasing HIGH’s risk aversion decreases μ0 and increases μ1.

2.4 Relationship to Auctions

In our basic model, the seller names the price. However, the same ideas are relevant where the

buyer names the price, as in an auction. Consider, for example, a first-price sealed-bid auction.

The threat to walk away from negotiations in our basic game translates into a strategy where the

seller uses a secret, random reserve price.16

To make the connection as transparent as possible, consider an auction with a single risk-averse

buyer whose value for the object is rh with probability μ or rl with probability (1− μ). Suppose

the seller announces before the buyer bids that the reserve price is p1 (y) with probability y and rl

16See Li and Tan (2000) for an analysis of the role of secret reserve prices in auctions.
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with probability (1− y). LOW will never bid more than her value, so her best strategy is to bid

rl. Since there is no competition, HIGH faces the choice between bidding p1 (y) and winning the

object with probability 1, or bidding rl and winning the object with probability 1 − y. Bidding

p1 (y) is preferred whenever:

vh (w − p1 (y)) + θh ≥ y (0) + (1− y) (vh (w − rl) + θh) ,

or, by the same reasoning used at (6),

vh (w − p1 (y)) ≥ yvh (w − rh) + (1− y) vh (w − rl) . (10)

By the definition of p1 (y), (10) holds with equality, and thus it is a best response for HIGH to bid

p1 (y).17

Using the connection between our PFO problem and a first-price auction with a random reserve

price, we can show that the random reserve price scheme outlined above is optimal (from the seller’s

perspective) when there is one bidder and the buyer cannot be charged unless she wins the object.

The argument begins by noting that when the buyer only pays the seller if she wins the object, a

general simultaneous mechanism consists of a bid-probability-of-winning pair for HIGH and LOW.

Recalling that we earlier argued that any mechanism that gives HIGH the object with probability

less than 1 is dominated by one that gives it for sure, such general mechanisms correspond to

the mechanisms we consider in our PFO problem. Thus, the seller-optimal PFO mechanism

corresponds to the seller-optimal general simultaneous mechanism, the only difference being that

the optimal PFO is implemented sequentially. However, as we noted above, the PFO problem we

consider is formally equivalent to a simultaneous mechanism. Finally, since the random-reserve

first-price auction described above is equivalent to the optimal PFO, it follows that a random-

reserve first-price auction is optimal (in the special case of a single buyer who only pays if she is

awarded the object).

Although our selling mechanism is most closely linked to an auction with a single bidder, the

same sorts of effects arise in auctions with multiple bidders. The randomness in the seller’s reserve

price imposes risk over and above the risk imposed by other buyers’ bidding behavior that, in the

case of risk averse buyers, will induce them to bid more aggressively and may increase the seller’s

expected revenue.18 Similarly, the same effects would seem to arise in a Dutch auction, due to
17 If desired, HIGH’s indifference can be broken by letting the reserve price be p1 (y)− ε with probability y and rl

with probability (1− y).
18 In a similar vein, McAfee and McMillan (1987) show that when bidders are risk averse, uncertainty can also

increase seller revenues.

14



its correspondence to the first-price sealed bid auction. Thus, the seller in such an auction may

benefit from employing a stochastic reserve price, i.e., a probabilistic rule for stopping the auction

if the price drops too far. Faced with such a risk of “losing” the object, bidders will be induced

to behave more aggressively. If the gain from the increase in the auction price outweighs the loss

from the increased likelihood of the object going unsold, the seller will benefit from such a practice.

3 Extensions to the basic model

We now extend the analysis in three ways. First, we consider a model in which the seller makes

walking away from a sale credible by potentially selling the object to another buyer, where the

process of searching for the outside buyer is costly and stochastic. Second, we show in the context

of the model from Section 2 that the results are robust to the introduction of additional buyer

types. In fact, provided that all buyers are sufficiently risk averse, the optimal selling strategy is a

sequence of Possibly-Final Offers, a “PFO cascade.” Third, we show that the results also hold for

more general specifications, allowing for the object to be multi-dimensional, including the purchase

of more than one unit, and relaxing the assumption that the buyer’s utility function is additively

separable in money. Each of the three extensions stands alone.

3.1 Outside opportunities and costly search

Our basic model assumes that the seller can commit to walking away from the buyer at no cost. In

this section, we incorporate the cost of commitment into the model by assuming that, in addition

to the buyer with unknown valuation, whom we will refer to as the “current” buyer, there are also

“outside” buyers with known valuation p0. The outside buyer’s value for the object is less than

HIGH’s, p0 < rh.

The game we consider in this section is essentially the same as the one considered in our basic

model, with the search aspect added. At the start of the game (stage 0), the seller undertakes

costly investments that determine the probability y that an outside buyer will be available if the

current buyer rejects the seller’s initial offer. These investments could take the form of advertising,

direct marketing, etc. At stage 1, the seller offers the current buyer price p1. If the current buyer

rejects, then, if an outside buyer is available, the seller offers the object to him at price p0.19 If

there is no outside buyer available, the seller returns to the current buyer with a lower price, p2.

19Since the outside buyer’s value is known, the seller should charge p0 whenever he sells to the outside buyer.
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To locate an outside buyer, the seller must make an ex ante investment. The greater the

investment, the more likely it is that an outside buyer will be available to sell to in case the current

buyer rejects the seller’s initial offer. Let c (y) be the cost associated with locating an outside

buyer with probability y. We assume that c (y) is strictly increasing and strictly convex in y.

In order to focus on the interesting case, we assume that c0 (0) > p0 − rl. This assumption is

trivially satisfied if p0 ≤ rl. When p0 > rl, the seller would rather sell to the outside buyer than to

LOW, which gives him an incentive to increase y. Due to this incentive, the seller might choose to

make a probabilistic offer (i.e., choose 0 < y < 1) even if he knew he faced a LOW current buyer.

Assuming c0 (0) > p0 − rl ensures that this incentive alone is not sufficient to induce the seller to

adopt a PFO strategy. Thus, as in our basic model, if the seller adopts a PFO strategy he will do

so because threatening to walk away from the current buyer increases the HIGH current buyer’s

willingness to pay for the object immediately.

We also assume that the seller is able to commit to sell to the outside buyer at price p0 whenever

such a buyer is found. This assumption is without loss of generality when p0 > rl, since in this case

the seller would rather sell to the outside buyer than to LOW. While the seller will prefer to sell

to LOW rather than the outside buyer when p0 < rl, assuming that the seller is able to commit to

sell to the outside buyer facilitates comparison with out basic model (since that model corresponds

to the case where p0 = 0). Hence, we do not rule out this case ex ante. Indeed, in cases where

0 < p0 < rl, the seller’s cost of walking away is lower than in our basic model. Thus, allowing for

outside buyers with low reservation values actually lessens the severity of the seller’s commitment

problem.

We begin by deriving the full information benchmark. If the seller can observe the buyer’s type

and the current buyer is HIGH, the seller charges him price rh. If the current buyer is LOW, our

assumption that c0 (0) > p0 − rl implies that the seller’s best strategy is to charge price rl and sell

to the current buyer with probability 1 rather than attempt to attract an outside buyer and then

sell to the current buyer at price rl if one does not materialize. Thus, as in our basic model, the

seller’s full information profit is μrh + (1− μ) rl.

If the seller cannot identify the current buyer’s type, then he must offer a screening contract as
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in our earlier analysis. The seller’s optimization problem is written as:

max
p1,p2,y

μp1 + (1− μ) [yp0 + (1− y) p2]− c (y)

s.t. θh + vh (wh − p1) ≥ 0,
θl + vl (wl − p2) ≥ 0,

θh + vh (wh − p1) ≥ (1− y) (θh + vh (wh − p2)) , and

(1− y) (θl + vl (wl − p2)) ≥ θl + vl (wl − p1) .

Importantly, notice that the changes in this model affect only the seller’s objective function. The

current buyer’s participation and incentive compatibility constraints are unchanged.

Next we characterize the seller’s optimal deterministic selling strategy. Due to the potential

presence of the outside buyer, there are three possible deterministic offers that may be optimal.

If the seller chooses not to search for an outside buyer, then it can either set its price at rh and

sell only to HIGH or at rl and sell to all current buyers, regardless of type. These strategies offer

expected profit μrh and rl, respectively. If the seller searches for an outside buyer, he must choose

y = 1, in which case its optimal selling scheme is to charge price rh initially and, if that offer is

rejected, sell to the outside buyer at price p0. The seller’s expected profit under this alternative is

μrh + (1− μ) p0 − c (1). Under our assumption that c0 (0) > p0 − rl, it is straightforward to show

that this strategy offers less than the full information profit. As before, PFO strategies correspond

to the case where there is a positive probability strictly less than one that the current buyer will

receive a second offer if the first offer is refused.

Because the current buyer’s participation constraints and incentive compatibility contraints are

the same as in our basic model, the maximum first-stage price that HIGH will be willing to pay is

still given by p1 (y), as defined in (7). It is straightforward to show that p1 (y) > yp0 + (1− y) rl,

in which case the seller’s preferred selling mechansim involves quoting price p1 (z) initially (which

is accepted if the current buyer is HIGH), and, if this offer is rejected, selling to the outside buyer

at price p0 if available, and selling to the current buyer at price rl otherwise.

The seller’s problem can therefore be written as:

max
0≤y≤1

μp1 (y) + (1− μ) [(yp0 + (1− y) rl)]− c (y) .
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Taking the derivative, the optimal level of search satisfies:

μp01 (y
∗) + (1− μ) (p0 − rl)− c0 (y∗)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
≤ 0 if y∗ = 0

= 0 if 0 < y∗ < 1

≥ 0 if y∗ = 1.

.

That is, for an interior solution, the seller invests resources to generate an outside buyer (i.e.,

increases y) until the expected marginal increase in profit from selling to HIGH equals the marginal

cost of search less the marginal impact of increasing the likelihood of selling to the outside buyer

at price p0 instead of selling at stage 2 at price rl.

Proposition 6 In the costly search case, for any μ such that 0 < μ < 1, if HIGH is sufficiently

risk averse, using a PFO increases the seller’s expected profit: 0 < y∗ < 1. As HIGH becomes

infinitely risk averse, the seller’s expected profit converges in the limit to the full-information profit

of μrh + (1− μ) rl.

Adding the possibility of selling to an outside buyer introduces two new wrinkles to the problem.

On the one hand, it is costly for the seller to generate an outside buyer, and this cost tends to drive

him toward a small y. On the other hand, in the event that the seller walks away from the current

buyer, the seller receives p0, whereas in our basic model he received no profit. This factor gives

the seller an incentive to raise y. In the limiting case we consider in the proposition, the seller is

able to induce HIGH to pay almost his reservation price using an arbitrarily small threat of selling

to the outside buyer, and thus the search cost does not significantly impact the results. For more

moderate levels of risk aversion, the seller would have to balance the beneficial impact on HIGH’s

willingness to pay in the first period against the cost of finding an outside buyer and the mitigating

fact that walking away from the current buyer now results in non-negative profit p0.

Before going on, one case in particular bears mentioning. When p0 > rl, the seller would

rather sell the object to the outside buyer than to LOW. Because of this, the seller’s commitment

to probabilistically walk away from the current buyer following an initial rejection is credible. If

the buyer rejects the initial offer, then with probability y the seller has a better opportunity and

credibly takes it. Otherwise, the seller returns to the current buyer and sells a lower price. Thus

the addition of search costs and an outside buyer endogenizes the commitment on the part of the

seller that we assumed in our basic model. Interestingly, the seller’s threat to walk away will be

credible as long as p0 > rl. However, the existence of a buyer with value p0 induces a very risk

averse HIGH buyer to be willing to pay (nearly) rh > p0 for the object because, from the point of
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view of HIGH, the item being sold to the outside buyer (in which case HIGH earns zero surplus)

is equivalent to being offered the object at price rh. The type of situation we discuss here, where

an outside buyer is used to induce a current buyer to pay a higher price, plays a critical role in a

number of the examples we discuss in Section 4.20

3.2 Selling to multiple types: PFO cascades

Consider the model of Section 2, where the seller offers a single unit of a good to a buyer whose

reservation price is unknown. Suppose there are n > 2 types of buyers, let rk be the type-k buyer’s

reservation price, with r1 > r2 > ... > rn.21 Let μk be the prior probability of a buyer being type

k, with μk > 0 and
Pn

k=1 μk = 1. A buyer of type k has initial wealth wk and utility function

uk (q, p) = θkq + vk (wk − p) ,

where q = 1 if the buyer purchases the object and 0 otherwise, and p is the price he pays should

he buy the object. For simplicity, we will let vk () = v () and wk = w for all k, although the results

do not depend on this assumption.

The seller once again offers a sequence of prices. Let pk be the kth price offered. Let yk be

the probability that, if the buyer rejects the seller’s offer of pk−1, the seller will walk away rather

than make a kth offer. Once again we consider screening contracts where p1 is accepted only by

type 1, p2, if a second offer is made, is acceptable to types 1 and 2, but type 1 prefers p1, and thus

p2 is accepted only by type 2, and so on. Clearly, it is optimal to offer p1 with probability 1, i.e.,

y1 = 0. Hence the seller’s objective is to:

max
y2,...,yn,p1,...,pn

nX
k=1

⎛⎝ kY
j=1

(1− yj)

⎞⎠μkpk. (11)

Each type of buyer has a participation constraint and a set of incentive-compatibility constraints.

The participation constraints are written:

θk + v (w − pk) ≥ 0, k = 1, ..., n. (12)

20We present a version of this model with an endogenous outside option in Appendix B.
21This would also be the appropriate model in the two-type case if HIGH’s and LOW’s valuations were determined

by a fundamental plus noise, and hence unknown. For example, if HIGH and LOW are equally likely, and HIGH’s

value is equally likely to be 4, 5, or 6, and LOW’s value is equally likely to be 1, 2, or 3, this corresponds to a six-type

case where the buyer’s value is equally likely to be 1, 2, 3, 4, 5, or 6.
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The incentive-compatibility constraints can be divided into those that ensure type k does not want

to accept the first k − 1 offers:⎛⎝ kY
j=t+1

(1− yj)

⎞⎠ (θk + v (w − pk)) ≥ θk + v (w − pt) , k = 2, ..., n, and t = 1, ..., k − 1, (13)

and those that ensure that type k prefers the kth offer to any subsequent probabilistic offer:

θk + v (w − pk) ≥
⎛⎝ tY

j=k+1

(1− yj)

⎞⎠ (θk + v (w − pt)) , k = 1, ..., n− 1 and t = k + 1, ..., n. (14)

The optimal contract involves a PFO if the optimal solution involves 0 < y∗k < 1 for some k.

The optimal contract involves a PFO cascade if 0 < y∗k < 1 for all 1 < k ≤ n.

Proposition 7 When buyers are sufficiently risk averse, the solution to the multiple-type problem

involves a PFO cascade. Further, as the buyers become infinitely risk averse, the seller’s expected

profit converges in the limit to the full-information maximum.

The key observation underlying Proposition 7 is that each buyer is indifferent between the game

ending and buying the object at his reservation price. Thus, just as in the two-type case, as long as

there is a chance of the game terminating following a rejection, as buyers become very risk averse,

their willingness-to-pay for the object rather than risk termination approaches their reservation

value. Thus, the seller is able to extract this value even if the threatened chance of termination is

small.

3.3 Multidimensional objects and general utility functions

Consider a problem where an offer can relate to both the price of the object and its characteristics,

x, a vector of attributes which may include quantity, various measures of quality, and other aspects

of the object relevant for the buyers’ valuations. Let uh (x,wh − p) be HIGH’s utility function and

ul (x,wl − p) be LOW’s, and assume that ut (0, wt) = 0, that ut (x,wt) is strictly quasiconcave for

t ∈ {h, l}, and that ∂2uh(x,w)
∂w2

< 0 for all (x,w) (i.e., that HIGH is strictly risk averse over wealth).

Let reservation price, rt (x) , satisfy ut (x,wt − rt (x)) = 0 for t = h, l. Assume that rh (x) >

rl (x) for all x. Thus HIGH is willing to pay more for object x than is LOW, and any object-price

pair that is just acceptable to LOW will offer strictly positive utility to HIGH.
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The seller produces object x according to cost function c (x). The seller’s problem is:

maxx1,p1,x2,p2 μ (p1 − c (x1)) + (1− y) (1− μ) (p2 − c (x2))

s.t. uh (x1, wh − p1) ≥ (1− y)uh (x2, wh − p2) , (15)

uh (x1, wh − p1) ≥ 0, (16)

(1− y)ul (x2, wl − p2) ≥ ul (x1, wl − p1) , and (17)

ul (x2, wl − p2) ≥ 0. (18)

Denote the solution to this problem by (x∗1, p∗1, x∗2, p∗2, y∗) and indicate the seller’s optimized profit

by π∗.

Let
¡
xF1 , p

F
1 , x

F
2 , p

F
2

¢
be the pair of offers that would maximize profit with full information, as-

sumed for simplicity to be unique. That is,
¡
xF1 , p

F
1

¢
maximizes p1 − c (x1) subject to

uh (x1, wh − p1) ≥ 0, and
¡
xF2 , p

F
2

¢
maximizes p2 − c (x2) subject to ul (x2, w − p2) ≥ 0. Under

our assumptions,
¡
xF1 , p

F
1 , x
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2 , p

F
2

¢
is unique and represents the theoretical maximum (i.e., full-

information) profit those buyers can yield. Let πF stand for the seller’s profit in this case.

Let
¡
xD1 , p

D
1 , x

D
2 , p

D
2 , y

D
¢
solve the seller’s problem in the deterministic case where there is incom-

plete information but PFOs are not permitted (i.e., y ∈ {0, 1}). Again, assume
¡
xD1 , p

D
1 , x

D
2 , p

D
2

¢
is unique. Let πD stand for the seller’s profit in this case, and note that under our assumptions,

πD < πF , since
¡
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1 , x

D
2 , p
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2

¢
must satisfy (15), but
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1 , x
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¢
violates it.

Proposition 8 When HIGH is sufficiently risk averse, the seller’s profit-maximizing contract in-

volves a PFO, i.e., 0 < y∗ < 1. Further, the seller’s expected profit is non-decreasing with HIGH’s

risk aversion, and strictly increasing with risk aversion when the seller uses a PFO. Finally, as

HIGH becomes infinitely risk averse the seller’s expected profit ultimately converges to the full-

information profit, π∗ → πF .

The key step in the proof is to note that the lottery HIGH faces when she rejects the first offer

is equivalent to a lottery where, with probability y, HIGH is offered the object/price combination

that would maximize the seller’s profit given full information about HIGH’s utility function (giving

HIGH 0 utility), and with probability 1− y the buyer is offered the same object at a lower price.

The proof then proceeds as in the proof of Proposition 2. As HIGH’s risk aversion increases to

infinity (i.e., as uh () becomes more concave along the monetary dimension), the expected utility

of this lottery decreases to zero for any y strictly between 0 and 1, and the seller is able to extract

more and more of HIGH’s surplus at ever decreasing cost in terms of lost sales to LOW.
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3.4 PFOs using price and quality or quantity

An important special case of multidimensional PFOs arises where the seller determines both the

price and quality of the object to be sold. All results in this section apply if quantity, i.e., number

of units sold to the buyer, is substituted for quality. Since Proposition 8 applies, we know that a

PFO strategy is optimal for any mix of buyers when HIGH is sufficiently risk averse. So, rather

than prove the general result again, we instead make plausible assumptions about the form of the

buyers’ utility functions that allow us to explicitly derive the optimal contract and analyze its

comparative statics.

Let q be the quality of the object, measured in terms of the dollars required to produce that

level of quality, and let p be the purchase price of the object. The analysis is the same if q

represents quantity instead of quality. As before, there are two types of buyers, HIGH and LOW,

and the probability that the buyer is HIGH is μ, where 0 < μ < 1. HIGH has utility function

uH (q, p) = (f (q)− p)
1
b where f is a strictly increasing, strictly concave function. LOW has utility

function uL (q, p) = (af (q)− p)
1
b , where 0 < a < 1. Thus, as specified, any offer (q, p) that is

acceptable to LOW is also acceptable to HIGH, which is the application of the assumption that

rh (x) > rl (x) from Section 3.3. The risk aversion of a buyer over surplus, f (q) − p, is captured

by b > 1, where higher values of b correspond to more risk averse buyers. To simplify the analysis,

we assume that f (q) =
√
q and all propositions and corollaries are proved for this case.22

If the buyer accepts offer (q, p), the risk-neutral seller earns profit p− q. It is straightforward

to show that if the seller were able to identify the buyer’s type, i.e., there were full information,

the seller would offer HIGH price the pF1 =
1
2 and quality q

F
1 =

1
4 , and LOW the price pF2 =

a
2 and

quality qF2 =
a2

4 .

The structure of the game when the seller doesn’t know the buyer’s type is as in the earlier

sections, although offers now comprise quality-price pairs. The seller makes a first offer (q1, p1),

which the buyer may either accept or reject. If the buyer rejects this initial offer, the seller walks

away with probability y or makes a second offer (q2, p2) with probability1− y. As previously, the

seller’s first offer is tailored to be accepted by HIGH but not by LOW. The second offer is designed

so that if it is made, LOW accepts.

The active constraints in this game are LOW’s participation constraint and HIGH’s incentive-

22The same qualitative results hold as long as f (q) is strictly increasing and strictly concave, f (0) = 0, and

f 0 (0) > 1
a .
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compatibility constraint. Thus the seller’s problem is written as:

max
p1,s1,p2,s2,z

μ (p1 − q1) + (1− y) (1− μ) (p2 − q2) , (19)

s.t. (f (q1)− p1)
1
b ≥ (1− y) (f (q2)− p2)

1
b , and

(af (q2)− p2)
1
b ≥ 0.

As before, we begin by considering deterministic contracts. As is usual in screening problems,

LOW’s contract is designed to offer her zero surplus, while HIGH’s contract is designed so that

HIGH is just indifferent between the two offers. Denote the optimal deterministic contract with the

superscript D, and let πD be the optimized level of the seller’s profit. Proposition 9 summarizes

the optimal deterministic contract. Supporting computations and proofs for all propositions and

corollaries are presented at the end of the Appendix.

Proposition 9 If μ ≤ a, then the optimal deterministic contract is:
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4
,
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¶
, and (20)
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!
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and πD = 1
4
μ−2μa+a2

1−μ . If μ > a, the optimal deterministic contract is
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= (0, 0) ,

and πD = μ
4 .

As in our basic model, when μ is sufficiently large, it is optimal for the seller to contract

only with HIGH. When the proportion of HIGHs in the population is relatively small, though, it

becomes optimal for the seller to contract with both HIGH and LOW. However, since the seller

now has two instruments available, he can make different offers to HIGH and LOW even without

randomization. First, he offers a high quality at a high price, which is acceptable to HIGH but

not to LOW. The second offer is a lower quality at a lower price which is (just) acceptable to

LOW, but because HIGH values quality more, is inferior to the first offer from HIGH’s point of

view. Varying quality provides an instrument to discriminate between the types.

Randomization via PFO strategies provides an additional discrimination instrument and thereby

complements quality variation. Recall the seller’s problem, (19). Proposition 10 establishes that

a PFO strategy is optimal if HIGH is sufficiently risk averse.
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Proposition 10 When PFOs are permitted, the seller prefers a PFO strategy to the optimal deter-

ministic contract, provided that HIGH is sufficiently risk averse. When b ≥ b∗ = 1
2

³
a(1−μ)
μ(1−a) + 1

´
,

the optimal PFO contract is given by:

(q∗1, p
∗
1) =

Ã
1

4
,
1

2
−
µ

a (1− μ)

(2b− 1)μ (1− a)

¶ b
b−1
(1− a) a

b− 1
2b− 1

!
, (22)

(q∗2, p
∗
2) =

Ãµ
a
b− 1
2b− 1

¶2
, a2

b− 1
2b− 1

!
, and (23)

y∗ = 1−
µ

a (1− μ)

(2b− 1)μ (1− a)

¶ 1
b−1
. (24)

Otherwise, the seller maximizes expected profit by offering the optimal deterministic contract, (20)

and (21).23

When PFOs are permitted, the seller gains an additional instrument, randomization, that he can

use to separate the types. Making a second offer only probabilistically relaxes HIGH’s incentive-

compatibility constraint, but does so at the cost of reducing the expected revenue from selling to

LOW. However, the magnitude of this cost decreases with HIGH’s risk aversion. When HIGH is

sufficiently risk averse, it becomes optimal to use randomization, at least to some extent, and in

response the seller is able to increase the price from HIGH, and increase both the price and quality

to LOW, along with the associated profit margin.

The minimum level of risk aversion for which a PFO is optimal, which is captured by b∗, depends

on the parameters of the problem in an intuitive way. It is decreasing in μ since, as μ increases,

the loss due to haggling decreases and the benefit increases, since there are fewer LOWs and more

HIGHs in the population. And, it is increasing in a since, as a decreases, the potential profit

earned by selling to LOW decreases. Thus, for any fixed b, a PFO becomes less costly and so is

more likely to be profitable.

For a given level of risk aversion, the optimal PFO contract offers a lower first price and a lower

second quality and price than the full-information optimum. This distortion arises as the cost of

separating the two types. However, as HIGH becomes infinitely risk averse this distortion vanishes,

and the cost approaches zero.

Corollary 1 As b approaches infinity, the optimal PFO contract converges to the full-information

optimum,
¡
qF1 , p

F
1 , q

F
2 , p

F
2 , y

¢
=
³
1
4 ,
1
2 ,

a2

4 ,
a2

2 , 0
´
.

23Note that if μ > a, b∗ < 1, in which case a PFO is always optimal.
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4 Uncertainty-Inducing Sales Practices

Sellers employ a number of practices that capture the spirit of PFO strategies. When studying

the examples, it is important to keep two features of our results in mind. The first is that,

when buyers are sufficiently risk averse, the seller benefits from even small deviations from the

optimal deterministic strategy. Thus, in order to benefit from a PFO, the seller needs to impose

some uncertainty on the buyer, but it is not necessary that he commit to the optimal PFO. For

example, when the optimal deterministic strategy is to sell to all buyers at the LOW’s reservation

value, convincing sufficiently risk-averse buyers that there is even a small probability of termination

will raise the seller’s expected profit. Second, in order to induce the buyer to pay a higher initial

price, the seller needs to convince the buyer that there is a chance that, if she rejects the offer, she

will not get another opportunity to purchase the item at a lower price. However, this does not

imply that the seller must destroy (or permanently keep) the item if the buyer rejects his initial

offer.

Sellers frequently threaten that, if the buyer does not purchase the item immediately, the item

will be sold to another buyer in order to sow the seeds of uncertainty in buyers’ minds. For

example, car salespeople will often tell a buyer interested in a particular vehicle that another buyer

is coming in later that day to look at that same car. In this case, the possibility that the car will

be unavailable later is meant to induce the buyer to purchase immediately rather than wait and

try to win better terms. If the seller is unable to make an alternative sale within a reasonable

amount of time, he will later sweeten the deal.24 Similarly, Real Estate agents often begin showing

a house by having an open house, in hopes that buyers will perceive that there are many others

interested in the same house. Again, the uncertainty about whether the item will be available at

a later date often leads risk-averse buyers to pay substantially more earlier, despite the fact that

more favorable terms may become available later.

A similar strategy employed by some retailers is to intentionally keep supplies low. A buyer

faced with the chance to purchase a “one of a kind” item knows that her opportunity will be lost

if another buyer purchases the item before she can. Thus she may be unwilling to wait to see

if the price declines in the future. Filene’s Basement uses a PFO-type strategy at its flagship

24This strategy works best for one-of-a-kind items. An antique silver dealer, who has many hard-to-find or unique

items, may say in effect: “This is my price for this hard-to-find piece. I expect that one of my regular customers may

purchase it in the next few weeks. If you come back then, and it has not sold, I will offer you a better price.” Robert

Stern, Silstar, London Silver Vaults, personal communication, March 2005.
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Boston store. Each item offered for sale is marked with the date on which it originally was made

available. Items are then automatically marked down to 75% of the original price after 14 days

of going unsold, 50% of the initial price after 21 days, and 25% of the initial price after 28 days.25

Again, the possibility of lower prices in the future is coupled with the very real chance that the

item may be purchased by someone else before the price drop occurs. Many other retailers follow

versions of this strategy, offering items as sale or clearance prices, but only if they do not sell out

at their regular prices.

A similar practice is prevalent on eBay, where many sellers of goods on eBay offer “Buy It Now

prices” on items. An item is generally available at its Buy It Now price until the first bid is made

on the item. A buyer who values the item above the Buy It Now price can purchase it, or wait in

the hope that the eventual auction price will be lower. However, by not purchasing immediately

the buyer takes the risk that some other buyer might Buy It Now or that the winning auction price

will be higher than the Buy It Now price. These risks increase the attractiveness of the Buy It

Now price, and may improve the seller’s expected outcome.

To use a non-sales example, when a new Ph.D. is given an assistant professorship offer, she does

not know whether the department or dean has other potential hires waiting in queue. Thus, if

the department is limited to only make one offer at a time, then the offer recipient does not know

whether a rejection will lead the department to improve the offer or move on to the next candidate

on the list.

Sellers may also try to foster uncertainty about whether improved offers will be made by em-

ploying agents to sell for them. For example, the owners of car dealerships sell via salespeople, and

it is often unclear just how much discretion the salesperson has to make a deal. Often, following

a rejection of his initial price, the salesman will claim to “check” with his manager about whether

it is possible to improve the deal or not. Uncertainty about the manager’s reaction to a rejected

offer can serve to make a PFO strategy effective. (Presumably, managers have a stronger reason to

maintain a reputation for not continuing to cut prices than would an individual salesman.) Agency

arrangements also play an important role in corporate takeover negotiations, where CEOs work out

the terms of the deal, but the final agreement must ultimately be approved by the board of direc-

tors. Thus, a CEO making a board-approved initial offer may benefit from giving the impression

that the board is unlikely to approve better terms.

25 Items remaining unsold after 35 days are given to charity.
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5 Conclusion

A seller who sets the terms in a buyer-seller interaction, which the buyer then accepts or rejects, will

prefer a PFO strategy to any deterministic selling strategy, provided that the buyer is sufficiently

risk averse. To reintroduce our earlier examples, these strategic sellers will range from devious

dealers to deft deans. They will put forth their possibly-final offers in locales as varied as bargain

basements and buyout boardrooms.

Our results hinge on sellers exploiting buyers’ risk aversion. Elsewhere, it has been argued

that, at least when stakes are small to moderate, behavior that appears to be caused by risk

aversion may actually be caused by loss aversion.26 However, buyer loss aversion only serves to

reinforce our results. That is, loss aversion makes PFOs more likely to be beneficial. Beginning

from a particular reference point, loss averse agents weigh losses much more than equivalent-sized

gains. For example, Tversky and Kahneman (1991) find people to be indifferent between an equal

probability of a loss of $x and a gain of $2x, and $0 for sure. In the context of our PFO game, the

loss incurred when a buyer rejects an initial offer and the seller walks away is likely to loom large,

all the more so because the high-valued buyer could have secured the item by accepting the seller’s

initial offer. Thus, loss aversion also drives buyers to accept higher initial offers, and consequently

reinforces risk aversion in making PFOs effective tools for sellers.27

Although our analysis addresses the case where the buyer is risk-averse over monetary outcomes,

the results generalize to any case in which the buyer’s utility function exhibits curvature (or a break

in slope due to loss aversion). For example, PFO strategies would also be optimal in a situation

where buyers have linear utility for money, but concave utility for quality. PFO strategies reap

benefits because imposing risk on the buyer enhances the seller’s ability to discriminate between

buyers who differ on willingness-to-pay. A buyer with "curvature" is willing to sacrifice expected

value to avoid a losing a deal, and the threat of breaking off negotiations deters the high-valued

buyer more than the low-valued one. In more elaborate formulations, curvature could complement

other instruments for separation, such as differences in time preference or distaste for negotiation.

Although this paper posits that the seller sets the terms of the deal, its results transfer seamlessly to

26See Kahneman and Tversky (1979) for a description of loss aversion, originally presented in the context of

Prospect Theory. See Rabin (2000) for an elegant discussion of risk aversion and loss aversion over moderate-stakes

gambles.
27 Indeed, our results regarding the desirability of PFOs also hold when buyers are sufficiently loss averse but risk

neutral or when buyers are both risk and loss averse.
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the case where the buyer facing a risk-averse seller of unknown type sets the terms. Thrusting risk

on risk-averse responders, as PFO strategies demonstrate, can be an effective tool for extracting

surplus.
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A Proofs

Proof of Proposition 1: Let π (y) = μp1 (y) + (1− y) (1− μ) rl. When μ = rl
rh
, then π (0) =

π (1) = rl. Since p1 (y) is strictly concave, so is π (y). Therefore, π (y) has a unique, interior

maximizer.¥

Proof of Proposition 2: A PFO is superior to deterministic contracting when there exists a y

such that

μp1 (y) + (1− y) (1− μ) rl > max {μrh, rl} .

An increase in a decision maker’s risk aversion is equivalent to a decrease in her certainty equivalent

for any lottery.28 Hence, increasing risk aversion corresponds to a pointwise increase in p1 (y).

Let pn1 (y) be a sequence of strictly decreasing, strictly concave functions such that pn1 (0) = rl,

pn1 (1) = rh, pn+11 (y) > pn1 (y) pointwise for all n, and limnp
n
1 (y) = rh for y ∈ (0, 1). Hence

pn1 (y) corresponds to increasingly risk-averse versions of HIGH. Let yn > 0 be a sequence of

walk-away probabilities with lim yn = 0.

lim
n→∞μpn1 (yn) + (1− yn) (1− μ) rl = μrh + (1− μ) rl.

28See Mas-Colell, Whinston, and Green (1995), Proposition 6.C.2.
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Since the seller’s profit converges to the full information profit for any such sequence yn, it also

converges for the optimal sequence.¥

Proof of Proposition 3: If HIGH is risk neutral, p1 (y) = yrh+(1− y) rl, and so p01 (y) = rh−rl,
and (9) becomes:

μ (rh − rl)− (1− μ) rl = μrh − rl,

which does not depend on y. Hence at the optimum, either y∗ = 0, and the seller sells to all buyers

at price rl, or y∗ = 1, and the seller sells to only HIGH at price rh.¥

Proof of Proposition 4: Let vh1 () and vh2 () be two monetary utility functions for HIGH such

that vh2 () is more risk averse than vh1 (). If the seller uses a PFO strategy against neither vh1 ()

nor vh2 (), the expected profit is the same in both cases, and the result follows. Let p1k () be the

reservation-price function when HIGH’s utility function is vhk (). Let yk ∈ [0, 1] be the optimal
probability of a second offer when HIGH has utility function vhk () . Expected profit when HIGH

has utility function vh1 () is given by:

μp11 (y1) + (1− y1) (1− μ) rl

≤ μp12 (y1) + (1− y1) (1− μ) rl

≤ μp12 (y2) + (1− y2) (1− μ) rl.

The first inequality follows from p12 (y) > p11 (y) and y1 ∈ [0, 1]. The second inequality follows

from the fact that y1 is feasible but not optimal when HIGH has utility function vh2. When

y1 ∈ (0, 1), the first inequality is strict.¥

Proof of Proposition 5. First, note that Proposition 1 implies that whenever HIGH is risk

averse, it is optimal to use a PFO when μ = pl
ph
. We prove Proposition 5a through a series of

claims. Let b (μ) be the value function for the seller’s optimization problem:

b (μ) = max
y

μp1 (y) + (1− y) (1− μ) rl,

and note that b (0) = rl and b (1) = rh. Further, by the Theorem of the Maximum, b (μ) is

continuous on [0, 1]. Let y (μ) be the optimal second-offer probability for μ. Figure 3 illustrates

the argument.

Claim 1: b (μ) is convex.
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Figure 3: The region over which PFOs are optimal.

Proof of Claim 1: Let μt = tμ0+(1− t)μ00, y0 = y (μ0), y00 = y (μ00), and yt = y (tμ0 + (1− t)μ00).
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Claim 2: For μ sufficiently high or sufficiently low, it is not optimal to use a PFO.

Proof of Claim 2: Note that μp1 (y) + (1− y) (1− μ) rl is concave in y, and p01 (y) > 0, where

at y = 0 and y = 1 we refer to the properly defined one-sided derivatives. The first derivative of

the objective function with respect to y is:

μp01 (y)− (1− μ) rl.

If μp01 (1)− (1− μ) rl > 0, y∗ = 1, and it is not optimal to use a PFO. Since

lim
μ−>1μp

0
1 (1)− (1− μ) rl > 0,
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for μ sufficiently close to 1 it is not optimal to use a PFO. Similarly, if μp01 (0) − (1− μ) rl < 0,

y∗ = 0, and it is not optimal to use a PFO. Since

lim
μ−>0μp

0
1 (0) + (1− μ) rl < 0,

for μ sufficiently close to 0 it is not optimal to use a PFO.

Claim 3: Equation b (μ) = rl has exactly two solutions, μ = 0 and μ0, where 0 < μ0 < 1.

Similarly, b (μ) = μrh has exactly two solutions, μ = 1 and μ1, where 0 < μ1 < 1.

Proof of Claim 3: Since using a PFO is not optimal for sufficiently small μ and b (0) = rl,

b () < rl for small μ. By convexity and continuity of b () there is exactly one point where b (μ0) = rl.

Since b (1) = rh, this point must be such that 0 < μ0 < 1. Similarly, since using a PFO is not

optimal for sufficiently large μ and b (1) = rh, b (μ) < μrh for large μ. By continuity and convexity

of b (), there is exactly one point where b (μ1) = μ1rh. Since b (0) = rl, this point must be such

that 0 < μ1 < 1.

Claim 4: A PFO strategy is optimal on the closed interval [μ0, μ1].

Proof of Claim 4: A PFO is optimal when b (μ) ≥ max {rl, μrh}, b (μ) ≥ rl on [μ0, 1], and

b (μ) ≥ μrh on [0, μ1]. The intersection of these two sets is [μ0, μ1]. Note: Claims 1 - 4 suffice for

Proposition 5a, except for the fact that μ0 < μ1.

Claim 5: Increasing HIGH’s risk aversion decreases μ0 and increases μ1.

Proof of Proposition 5b: Consider two utility functions v1 () and v2 () for HIGH and let v2 () be

more risk averse than v1 (). Denote the seller’s value function when HIGH has utility function v1 ()

by b1 (μ), and similarly let b2 (μ) be the seller’s value function when HIGH has utility function v2 (),

and let μt0 and μt1 solve b
t
¡
μt0
¢
= rl and bt

¡
μt1
¢
= μt1rh, respectively. By Proposition 4, increasing

risk aversion strictly increases the seller’s profit whenever a PFO is optimal. Hence b2 (μ) > b1 (μ)

for μ10 ≤ μ ≤ μ11. By continuity, μ
2
0 < μ10 and μ21 > μ11. Claim 5 suffices for Proposition 5b.

Finally, note that for any finite level of risk aversion, b
³
rl
rh

´
> rl, and therefore by the continuity

argument above, μ0 <
rl
rh

< μ1 for any finite level of risk aversion.¥

Proof of Proposition 6: A PFO is superior to deterministic contracting when there exists a y

such that

μp1 (y) + (1− μ) (yp0 + (1− y) rl)− c (y) > max {μrh, μrh + (1− μ) p0 − c (1) , rl} .

Using the same argument as in the proof of Proposition 2, for any fixed y > 0, the left-hand side

converges to μrh+(1− μ) (yp0 + (1− y) rl)−c (y) as HIGH becomes infinitely risk averse. Letting
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y be arbitrarily small, this converges to μrh + (1− μ) rl, the full information profit.¥

Proof of Proposition 7. For the purposes of the proof, it is notationally simpler to work with

zj = 1 − yj , the (conditional) probability of making a jth offer after the seller’s offer of pj−1 is

rejected. Let ζkt =
³Qt

j=k+1 zj

´
. For each k, constraints (14) can be rewritten as:

θk + v (w − pk) ≥ ζkt (θk + v (w − pt)) , for t = k + 1, ..., n, or

v (w − pk) ≥ (1− ζkt) v (w − rk) + ζktv (w − pt) , for t = k + 1, ..., n.

Let Pk (zk+1) satisfy:29

v (w − Pk (zk+1)) = (1− zk+1) v (w − rk) + zk+1v (w − rn) , for k = 1, ..., n− 1. (25)

Let z1 = 1, and let Pn (zn+1) = rn. Note that rk > Pk (zk+1) > rn = rk if 0 < zk+1 < 1.

Step 1: Since Pk (zk+1) ≤ rk, all participation constraints (12) are satisfied.

Step 2: For 0 < zk < 1, k = 2, ..., n, P (zk+1) satisfy (14). For each k = 1, ..., n, and

t = k + 1, ..., n:

v (w − Pk (zk+1)) = (1− zk+1) v (w − rk) + zk+1v (w − rn)

≥ (1− ζkt) v (w − rk) + ζktv (w − rn)

≥ (1− ζkt) v (w − rk) + ζktv (w − Pt (zk+1)) ,

where the first inequality follows from ζkt ≤ zk+1 and v (w − rk) < v (w − rn), and the second

inequality follows from Pt (zk+1) ≥ rn.

Step 3: Note that if pk ≥ rk+1 for k = 1, ..., n− 1, then (13) are satisfied.
Profit under Pk (zk+1) is given by

nX
k=1

⎛⎝ kY
j=1

zj

⎞⎠μkPk (zk+1) .

As v () becomes infinitely risk averse, Pk (zk+1) → rk for zk+1 ∈ (0, 1), and therefore pk > rk+1,

satisfying (13). Thus, as buyers become infinitely risk averse,
Pn

k=1

³Qk
j=1 zj

´
μkPk (zk+1) →Pn

k=1

³Qk
j=1 zj

´
μkrk. And, letting zk → 1, expected profit converges to

Pn
k=1 μkrk, the full

information profit. Finally, note that every zk must satisfy 0 < zk < 1 for this convergence to

occur, and therefore that a PFO cascade is optimal.30¥
29Functions Pk (z) are similar to p1 (y) from the two-type case except, being defined on z instead of y, Pk (z) are

decreasing and concave in z.
30 If zk = 0 for some k, then the game stops with probability 1, and profit can be no higher than k

j=1 μkrk. If

zk = 1 for k 6= 1, then pk = pk+1 ≤ rk+1, again bounding profit away from the full-information maximum.
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Proof of Proposition 8: Since πD < πF , and πD is the largest profit the seller can earn

without using a PFO, if we can show that π∗ → πF as HIGH becomes infinitely risk averse, this

establishes the result. Consider the family of offers such that x1 = xF1 , x2 = xF2 , and p2 = pF2 . This

satisfies LOW’s participation constraint (18). Let p̄ be the value of p1 such that ul
¡
xF1 , wl − p̄

¢
= 0.

Any value of p1 such that p̄ ≤ p1 ≤ pF satisfies (16) and (17). We will focus on the problem to

one of choosing p1 to maximize expected profit subject to x1 = xF1 , x2 = xF2 , p2 = pF2 , (15), and

p̄ ≤ p1 ≤ pF . The solution to this problem is feasible but not necessarily optimal in the seller’s

original problem.

Consider HIGH’s incentive-compatibility constraint evaluated at xF1 , x
F
2 , and pF2 .

uh
¡
xF1 , wh − p1

¢ ≥ yuh
¡
xF2 , wh − pF2

¢
.

Since uh
¡
xF1 , wh − pF1

¢
= 0, this can be rewritten as:

uh
¡
xF1 , wh − p1

¢ ≥ (1− y)uh
¡
xF2 , wh − pF2

¢
+ yuh

¡
xF1 , wh − pF1

¢
,

and letting p̂ be such that uh
¡
xF1 , wh − p̂

¢
= uh

¡
xF2 , wh − pF2

¢
, this can again be rewritten as:

uh
¡
xF1 , wh − p1

¢ ≥ (1− y)uh
¡
xF1 , wh − p̂

¢
+ yuh

¡
xF1 , wh − pF1

¢
. (26)

Note that since uh
¡
xF2 , p

F
2

¢
> 0, p̂ < pF1 .

Let p1 (y) be defined as:

uh
¡
xF1 , wh − p1 (y)

¢ ≡ (1− y)uh
¡
xF1 , wh − p̂

¢
+ yuh

¡
xF1 , wh − pF1

¢
,

i.e., the maximum price that satisfies HIGH’s (26). Since ∂2uh(x,w)
∂w2 < 0 for all (x,w), p1 (1) = pF1 ,

p1 (0) = p̂, and p1 (y) is increasing and concave on the interval (0, 1).

Since we have written the problem as a one dimensional monetary lottery, an increase in risk

aversion is equivalent to a increase in p1 (y) for all y, and as HIGH becomes infinitely risk averse,

p1 (y) converges to pF1 for 0 ≤ y < 1. Let pn1 (y) be a sequence of functions corresponding to

increasingly risk averse versions of HIGH. Let pn1 (1) = pF1 , p
n
1 (0) = p̂, and pn1 (y) is increasing in y

and concave on the interval (0, 1) for each n. Further, let pn+11 (y) > pn1 (y) for all 0 < y < 1, and

limn→∞pn1 (y) = pF1 for 0 < y < 1.

lim
y−→0 lim

n−→∞πn (y) = lim
y−→0 lim

n−→∞
¡
μ
¡
pn1 (y)− c

¡
xF1
¢¢
+ (1− y) (1− μ)

¡
pF2 − c

¡
xF2
¢¢¢

= lim
y−→0μ

¡
pF1 − c

¡
xF1
¢¢
+ (1− y) (1− μ)

¡
pF2 − c

¡
xF2
¢¢

= μ
¡
pF1 − c

¡
xF1
¢¢
+ (1− μ)

¡
pF2 − c

¡
xF2
¢¢
= πF .

34



Let π∗∗ = maxy
¡
μ
¡
pn1 (y)− c

¡
xF1
¢¢
+ (1− y) (1− μ)

¡
pF2 − c

¡
xF2
¢¢¢
. Since πF > πD, π∗ ≥

π∗∗, and π∗∗ → πF , this establishes that PFOs outperform deterministic strategies when HIGH is

sufficiently risk averse. The argument that the seller’s expected profit is non-decreasing in HIGH’s

risk aversion is similar to the one in Proposition 4.¥

A.1 Supporting computations for section 3.4

A change of variables simplifies the analysis. Let s = f (q) =
√
q be the utility earned by HIGH

from consuming q dollars worth of quality. Hence in terms of s, the utility functions of the buyers

can be written as uH (s, p) = (s− p)
1
b and uL (s, p) = (as− p)

1
b . Given that q is measured in

dollars, the cost of producing utility-from-quality s is given by c (s) = f−1 (s) = s2. Hence there

is a one-to-one correspondence between an offer (q, p) and an offer (s, p) for s defined in this way.

We will refer to s simply as quality, although it should be understood as the utility, measured in

dollar terms, that quality yields.

Under the assumptions we have made, the relevant constraints are HIGH’s incentive compati-

bility constraint and LOW’s participation constraint. The seller’s maximization problem is thus

written:

max
p1,s1,p2,s2

μ
³
p1 − (s1)2

´
+ (1− y) (1− μ)

³
p2 − (s2)2

´
,

s.t. (s1 − p1)
1
b ≥ (1− y) (s2 − p2)

1
b , and

(as2 − p2)
1
b ≥ 0.

Clearly, LOW’s participation constraint binds. Hence as2 = p2. Substitute this into the problem.

max
p1,s1,s2

μ
³
p1 − (s1)2

´
+ (1− y) (1− μ)

³
as2 − (s2)2

´
,

s.t. (s1 − p1)
1
b ≥

³
(1− y)b (1− a) s2

´ 1
b
.

HIGH’s incentive-compatibility constraint is equivalent to s1 − p1 ≥ (1− y)b (1− a) s2. Fur-

ther, since the right hand side of the constraint does not depend on s1 or p1, we can let k =

(1− y)b (1− a) s2 and thus separate out the problem of choosing a contract for HIGH that maxi-

mizes profits, subject to the constraint that HIGH’s utility under the contract is at least k:

max
p1,s1

³
p1 − (s1)2

´
s.t. : s1 − p1 ≥ k.
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Again, the constraint clearly binds, and we can write this as max s1−k− (s1)2. This is maximized
at s∗1 =

1
2 , implying p

∗
1 =

1
2 − (1− y)b (1− a) s2.

Substituting these values into the objective function yields:

max
y,s2

: μ

µ
1

4
− (1− y)b (1− a) s2

¶
+ (1− y) (1− μ)

³
as2 − (s2)2

´
. (27)

Thus the seller’s problem can be written as an unconstrained optimization problem in two variables,

subject to the boundary conditions that y ∈ [0, 1] and s2 ≥ 0.
The seller’s problem in the deterministic case is equivalent to (27) with y set equal to zero:

μ

µ
1

2
− (1− a) s2 − 1

4

¶
+ (1− μ)

³
as2 − (s2)2

´
. (28)

Differentiating with respect to s2 and setting the result equal to zero yields the optimal value of s2

when the seller chooses to make offers (s1, p1) and (s2, p2) that are accepted by HIGH and LOW,

respectively.

−μ+ a− 2sD2 + 2μsD2 = 0,

s =
1

2

a− μ

1− μ
if a ≥ μ.

Since s2 must be non-negative, whenever a < μ the seller will offer s2 = 0, which is equivalent to

contracting only with HIGH. In the deterministic problem, the optimal quality for HIGH is given

by sD1 =
1
2 , implying that s

D
2 < sD1 (since a < 1). Hence the seller will never choose to offer the

same contract twice.

Computing profits establishes the claims in Proposition 9. When a ≥ μ, profit is given by:

μ
³
p1 − (s1)2

´
+ (1− μ)

³
p2 − (s2)2

´
=
1

4

μ− 2μa+ a2

1− μ
.

When a < μ, profit is μ
4 . ¥

Proof of Proposition 10. The first derivatives of 27 with respect to s2 and y are:

Ds2 = −μ (1− y∗)b (1− a) + (1− y∗) (1− μ) (a− 2s∗2)
⎧⎨⎩ ≤ 0 at s∗2 if s∗2 = 0

= 0 at s∗2 if s∗2 > 0
, and (29)

Dy = μb (1− y∗)b−1 (1− a) s∗2 − (1− μ)
³
as∗2 − (s∗2)2

´⎧⎪⎪⎪⎨⎪⎪⎪⎩
≤ 0 at y∗ if y∗ = 0

= 0 at y∗ if y∗ ∈ (0, 1)
≥ 0 at y∗ if y∗ = 1

. (30)
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Suppose y∗ = 1. Since Ds2 equals zero, the first-order condition with respect to s2 is satisfied for

any value of s2. Further, the first term of Dy equals zero. For any a > 0 there exists an s2 (a)

such that as2 (a)− (s2 (a))2 > 0. Since Dy > 0 when s2 = s2 (a) and y∗ = 1, y∗ = 1 is not optimal.

The seller would always prefer to offer quality s2 (a) with some positive probability rather than set

y∗ = 1. Since offer (as2 (a) , s2 (a)) is feasible and offers the seller a positive profit, the optimal

second offer must also yield a positive profit. Hence y∗ < 1 and s∗2 > 0.

If y∗ ∈ (0, 1), (29) and (30) hold with equality. These equations can easily be solved for y∗ and
s∗2:

s∗2 = a
b− 1
2b− 1 (31)

y∗ = 1−
µ

a (1− μ)

(2b− 1)μ (1− a)

¶ 1
b−1

. (32)

Clearly y∗ < 1, as established above. From (32), y∗ > 0 whenever:

a (1− μ)

(2b− 1)μ (1− a)
≤ 1, or

b ≥ 1

2

µ
a (1− μ)

μ (1− a)
+ 1

¶
.

Hence a PFO is optimal whenever b > b∗ = 1
2

³
a(1−μ)
μ(1−a) + 1

´
. The remainder of the optimal PFO is

computed using (31) and (32).

Proof of Corollary 1. Consider (22) - (24). Note in (22) that q∗1 = qF1 for all b, and p∗1 → pF1

as b→∞ since
³

a(1−μ)
(2b−1)μ(1−a)

´
→ 0. The convergence for (q∗2, p∗2) is obvious. Applying L’Hopital’s

rule to ln (1− y∗) shows that y∗ → 0.¥

37



B A Model with an Endogenous Outside Option

An alternative version of the model we discuss in Section 3.1 is that, instead of the outside buyer

having known value p0, selling to the outside buyer corresponds to drawing a new buyer whose

reservation value has the same distribution as the current buyer, i.e., it is rh with probability μ and

rl with probability (1− μ). In this case, the expected price from selling to a new buyer becomes

endogenous, and the seller’s problem can be approached as a dynamic programing problem. The

seller begins by offering initial price p1. If this price is rejected, the seller may make an immediate

second offer to the current buyer, or alternatively request a new buyer. However, if a new buyer is

requested, she arrives only after some delay. Let δ be the relevant discount factor, where 0 < δ < 1.

If y is the probability that the seller will request a new buyer following a rejection, the highest initial

price that a HIGH buyer will accept is once again given by p1 (y). And, the seller’s problem is

stationary in the sense that the seller’s expected value at the start of the game is the same as its

expected value from choosing a new buyer following an initial rejection (conditional on that buyer’s

arrival). Thus, the seller’s expected value as a function of y, which we denote v (y), must satifsy:

v (y) = μp1 (y) + (1− μ) (y ∗ δ ∗ v (y) + (1− y) rl) , or

v (y) =
μp1 (y) + (1− μ) (1− y) rl
(1− (1− μ) ∗ y ∗ δ) .

In this setting, the seller’s optimal y is found by maximizing v (y).

Although a complete discussion of the solution to this problem falls beyond the scope of the

paper, the two extreme cases of a very patient seller and a very impatient seller are worth brief

comments. If the seller is extremely patient (i.e., δ is near one), then it can be shown that the

seller’s optimal strategy is to choose y = 1 and charge rh. That is, the seller offers the current

buyer price rh, and if it is rejected he chooses a new buyer and again offers price rh. Because there

is no cost to drawing a new buyer, the seller is content to draw a new buyer until he finds one that

is HIGH. Knowing this, HIGH buyers are willing to pay up to rh to acquire the object.

On the other hand, when the seller is very impatient (i.e., δ is near zero), then the seller’s

problem looks very much like the one we considered above. The seller would like to avoid drawing

a new buyer. However, a small threat of doing so induces a risk-averse HIGH buyer to raise her

willingness to accept a high initial price. Thus, a PFO will still be optimal, provided that buyers

are sufficiently risk averse and δ is sufficiently low.
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